• Title/Summary/Keyword: multiple antenna systems

Search Result 310, Processing Time 0.023 seconds

Analysis of Joint Transmit and Receive Antenna Selection in CPM MIMO Systems

  • Lei, Guowei;Liu, Yuanan;Xiao, Xuefang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1425-1440
    • /
    • 2017
  • In wireless communications, antenna selection (AS) is a widely used method for reducing comparable cost of multiple RF chains in MIMO systems. As is well known, most of literatures on combining AS with MIMO techniques concern linear modulations such as phase shift keying (PSK) and quadrature amplitude modulation (QAM). The combination of CPM and MIMO has been considered an optimal choice that can improve its capacity without loss of power and spectrum efficiency. The aim of this paper is to investigate joint transmit and receive antenna selection (JTRAS) in CPM MIMO systems. Specifically, modified incremental and decremental JTRAS algorithms are proposed to adapt to arbitrary number of selected transmit or receive antennas. The computational complexity of several JTRAS algorithms is analyzed from the perspective of channel capacity. As a comparison, the performances of bit error rate (BER) and spectral efficiency are evaluated via simulations. Moreover, computational complexity of the JTRAS algorithms is simulated in the end. It is inferred from discussions that both incremental JTRAS and decremental JTRAS perform close to optimal JTRAS in BER and spectral efficiency. In the sense of practical scenarios, adaptive JTRAS can be employed to well tradeoff performance and computational complexity.

Characterization of Effective Capacity in Antenna Selection MIMO Systems

  • Lari, Mohammad;Mohammadi, Abbas;Abdipour, Abdolali;Lee, Inkyu
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.476-485
    • /
    • 2013
  • In this paper, the effective capacity of a multiple-input multiple-output (MIMO) system in two different cases with receive antenna selection (RAS) and transmit antenna selection (TAS) schemes is investigated. A closed-form solution for the maximum constant arrival rate of this network with statistical delay quality of service (QoS) constraint is extracted in the quasi-static fading channel. This study is conducted in two different cases.When channel state information (CSI) is not available at the MIMO transmitter, implementation of TAS is difficult. Therefore, RAS scheme is employed and one antenna with the maximum instantaneous signal to noise ratio is chosen at the receiver. On the other hand, when CSI is available at the transmitter, TAS scheme is executed. In this case, one antenna is selected at the transmitter. Moreover, an optimal power-control policy is applied to the selected antenna and the effective capacity of the MIMO system is derived. Finally, this optimal power adaptation and the effective capacity are investigated in two asymptotic cases with the loose and strict QoS requirements. In particular, we show that in the TAS scheme with the loose QoS restriction, the effective capacity converges to the ergodic capacity. Then, an exact closed-form solution is obtained for the ergodic capacity of the channel here.

Development of Ultra-Wideband Antennas

  • Chen, Zhi Ning
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.63-72
    • /
    • 2013
  • The ultra-wideband (UWB) spectrum available for commercial applications has offered us an opportunity to achieve high-speed wireless communications and high-accuracy location applications. As one of key research areas in UWB technology, a lot of innovative broadband and miniaturization techniques for UWB antennas have been greatly invented and developed for years. This paper reviews the development of UWB antenna design in the past decade. Starting with a brief introduction of the specific requirements and promising applications of UWB systems, the unique design challenges of UWB antennas are highlighted. Next, the important milestones of UWB antenna designs are briefed. After that, a variety of planar UWB antennas invented for broadband operation, miniaturization, and multiple functions are introduced. Last, the comments on the development of UWB antennas in future are shared.

Antenna Selection and Shuffling for DSTTD Systems with Correlated Transmit-Antenna (송신 안테나 사이에 상관관계가 있는 DSTTD 시스템에서 안테나 선택과 뒤섞는 기법)

  • Joung, Jin-Gon;Jeong, Eui-Rim;Lee, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.767-774
    • /
    • 2007
  • A new transmit antenna selection and shuffling($AS^2$) method for spatially correlated double space time transmit diversity(DSTTD) systems is proposed. The proposed method allows dumb antennas and the superposition of multiple signals at the same transmit antenna, whereas the conventional methods consider the antenna shuffling(AS) only. According to the simulation result, the proposed method provides a 1.8 dB signal-to-noise ratio(SNR) gain over the conventional methods for spatially correlated transmit antennas. Although the number of candidates for $AS^2$ is much higher than that of AS, it is found that the number of candidates for $AS^2$ can be reduced to 36 by using the characteristics and properties of preprocessing matrices, and among them, only 6 candidates are almost always chosen. Next, we empirically compare the bit-error-rate (BER) performance of the proposed method with the conventional spatial multiplexing(SM) technique with antenna selection. Simulation results show that the proposed method outperforms the SM technique.

Capacity and Secrecy Rate Analysis of a Frequency-Domain Equal-Gain-Combining TR Scheme for Distributed Antenna Systems in Multi-User Multi-Path Fading Channels (다중 사용자 다중 경로 페이딩 채널에서 분산 안테나 시스템을 위한 주파수 영역 Equal-Gain-Combining TR 기법의 Capacity와 Secrecy Rate 분석)

  • Kim, Myoung-Seok;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.47-53
    • /
    • 2012
  • Time-reversal (TR) precoding focuses the energy of the effective channel in time and improves receive performance of a single tap receiver. Frequency-domain equal-gain-combining (FD-EGC) TR scheme, which works in linear block precoding fashion, has better temporal focusing performance than the traditional TR. Also, the FD-EGC improves receive performance of minimum mean square error receiver with distributed antenna systems (DAS). The detailed receive performance of the FD-EGC was analyzed in our previous work. In this paper, we focused on capacity analysis of the FD-EGC in DAS. We derived a scaling law which shows how the use of multiple antenna can increase the capacity of the FD-EGC precoding compared with that of no precoding. In addition, we analyze the secrecy rate of the FD-EGC which shows how high-rate messages can be transmitted towards an intended user without being decoded by the other users from the view point of information theoretic security.

Approximate Minimum BER Power Allocation of MIMO Spatial Multiplexing Relay Systems (다중 안테나 공간 다중화 릴레이 시스템을 위한 근사 최소 비트 오율 전력 할당 방법)

  • Hwang, Kyu-Ho;Choi, Soo-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.337-344
    • /
    • 2011
  • In this paper, a multiple-input and multiple-output (MIMO) spatial multiplexing (SM) relay system is studied in a bit error rate (BER) sense, where every node is deployed with multiple antennas. In order to efficiently use the limited power resource, it is essential to optimally allocate the power to nodes and antennas. In this context, the power allocation (PA) algorithm based on minimum BER (MBER) for a MIMO SM relay system is proposed, which is derived by direct minimization of the average BER, and divided into inter-node and inter-antenna PA algorithm. The proposed scheme outperforms the conventional equal power allocation (EPA) algorithm without extra power consumption.

An Intercell Interference Cancellation Method for OFDM-based Cellular Systems Using a Virtual Smart Antenna (OFDM 기반의 셀룰러 시스템에서 가상 스마트 안테나를 이용한 셀 간 간섭 제거 기법)

  • Park Kyung-won;Lee Kyu-in;Ahn Jae-young;Cho Yong-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12A
    • /
    • pp.1161-1167
    • /
    • 2005
  • In this Paper, a concept of virtual smart antenna (SA) is introduced for orthogonal Sequency division multiplexing (OFDM)-based cellular systems with a frequency reuse factor equal to 1. The OFDM-based cellular system is robust to multipath channels but has a disadvantage that the intercell interference (ICI) caused by adjacent base stations is large at the edge of a cell. In this paper, after deriving the symbol timing offset estimation scheme for the OFDM signal received from multiple base stations in a quasi-static fading channel, the ICI cancellation method based on virtual smart antenna is proposed using the steering vector formed by the symbol timing offset of the desired signal and interference signals.

Performance Evaluation of SFBC and STBC Antenna Diversity OFDM Systems (SFBC와 STBC 안테나 다이버시티 OFDM 시스템의 성능 분석)

  • Choi Seung-kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.727-732
    • /
    • 2005
  • OFDM is a digital modulation technique where a single data symbol is transmitted at multiple subcarriers which are orthogonal to each other. With this technique, frequency diversity can be achieved. The performance of OFDM systems with SFBC and STBC antenna diversity are analyzed, where data is transmitted over time and frequency selective Rayleigh fading channel. The performance of this technique, gauged by the average bit error rate, is analyzed for the OFDM systems.

Vertical Sectorization Techniques in MISO Downlink Active Antenna Systems (MISO 하향 능동 안테나 시스템에서의 수직 섹터분할 기법)

  • Ahn, Minki;Eom, Subin;Lee, Inkyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.997-1004
    • /
    • 2015
  • In this paper, we study vertical sectorization techniques in multiple-input single-output (MISO) downlink active antenna systems (AAS). In the AAS, antenna beam patterns can be adjusted in each sector and multiple vertical beams can form the vertical sectorization. Since an exhaustive search based vertical sectorization algorithm requires high computational complexity to find the optimal tilt angles, we propose two vertical sectorization algorithms to reduce the complexity. First, we provide an asymptotic sum rate based algorithm which utilizes a large system approximation of the average sum rate based on the random matrix theory. Next, by using the result in the single sector transmission, the single sector based algorithm is proposed. In the simulation results, we confirm that the proposed algorithms are close to the performance of the exhaustive search algorithm with much reduced complexity.

Design of a Broadband Sleeve Monopole Antenna by Using Matching Characteristics of the Sleeve (슬리브 정합 특성을 이용한 광대역 슬리브 모노폴 안테나 설계)

  • Ryu, Han-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6839-6845
    • /
    • 2015
  • The optimization design method for the broadband operation of the sleeve monopole was proposed to unify the multiple antennas essential to the multi-functional broadband wireless communication systems into one antenna. The structure of the sleeve part was optimized to enhance the impedance matching characteristics based on the theoretical analysis that sleeve part can works as the open stub. The thick monopole was used for the broadband operation. The radius of the sleeve and the permittivity of the dielectric inside the sleeve was optimized to enhance the impedance matching characteristics for the broadband operation. The optimized sleeve monopole having thick monopole shows broadband characteristics over 3:1 bandwidth, from 0.8 to 2.43 GHz, which is suitable for the commercial wireless communication system. The proposed broadband sleeve monopole can reduce multiple antennas essential to the multi-functional broadband systems to one antenna.