• Title/Summary/Keyword: multiple access channel

Search Result 744, Processing Time 0.021 seconds

Analysis of IEEE 802.11n System adapting SVD-MIMO Method based on Ns(Network simulator)-2 (Ns-2 기반의 SVD-MIMO 방식을 적용한 IEEE 802.11n 시스템 분석)

  • Lee, Yun-Ho;Kim, Joo-Seok;Choi, Jin-Kyu;Kim, Kyung-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.8
    • /
    • pp.1109-1119
    • /
    • 2009
  • WLAN(Wireless Local Area Network) standard is currently developing with increased wireless internet demand. Though existing IEEE 802.11e demonstrates that data rates exceed 54Mbps with assuring QoS(Quality of Service), wireless internet users can't be satisfied with real communication system. After IEEE 802.11e system, Study trends of IEEE 802.11n show two aspects, enhanced system throughput using aggregation among packets in MAC (Medium Access Control) layer, and better data rates adapting MIMO(Multiple-Input Multiple-Output) in PHY(Physical) layer. But, no one demonstrates IEEE 802.11n system performance results considering MAC and PHY connection. Therefore, this paper adapts MIMO in PHY layer for IEEE 802.11n system based on A-MPDU(Aggregation-MAC Protocol Data Unit) method in MAC layer considering MAC and PHY connection. SVD(Singular Value Decomposition) method with WLAN MIMO TGn Channel is used to analyze MIMO. Consequently, Simulation results show enhanced throughput and data rates compared to existing system. Also, We use Ns-2(Network Simulator-2) considering MAC and PHY connection for reality.

  • PDF

Design and Performance Analysis of a Communication System with AMC and MIMO Mode Selection Scheme (AMC와 MIMO 선택 기법이 결합된 통신 시스템의 설계 및 성능 분석)

  • Lee, Jeong-Hwan;Yoon, Gil-Sang;Cho, In-Sik;Seo, Chang-Woo;Portugal, Sherlie;Hwang, In-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.3
    • /
    • pp.22-30
    • /
    • 2010
  • This paper proposes a combination system of Adaptive Modulation and Coding (AMC) and Multiple Input Multiple Output (MIMO), which improves the throughput and has a better reliability. In addition, the system includes Precoding, Antenna Subset Selection and MIMO Mode Selection scheme. Finally, we make a performance analysis of the proposed system. The principal environmental parameters for the simulation experiment consist of a frequency non-selective rayleigh fading channel and a Spreading Factor (SF) of 16. Other parameters may be included in order to fulfill the requirements of the HSDP A Standard. The proposed system has a higher throughput and more reliability than the conventional system, which does not include MIMO Mode Selection scheme, Precoding or Antenna Subset Selection. According to the simulation results, the proposed system reaches the maximum throughput at 8dB, presentlng an improvement of 6dB and twice higher throughput, respect to the conventional system. Specifically, at the point of -6dB, the conventional system reaches 2.5Mbps, while the proposed system reaches 6.4Mbps at the same SNR. Also, at the point of 2dB, each system reaches 7.5Mbps (conventional system) and 15.3Mbps (proposed system), with near twice the difference. According to the results exposed above, we can conclude that the system proposed in this paper has, as the greatest contribution, the improvement of the throughput, especially, the average throughput.

Research for Application of Interactive Data Broadcasting Service in DMB (DMB에서의 양방향 데어터방송 서비스도입에 관한 연구)

  • Kim, Jong-Geun;Choe, Seong-Jin;Lee, Seon-Hui
    • Broadcasting and Media Magazine
    • /
    • v.11 no.4
    • /
    • pp.104-117
    • /
    • 2006
  • In this Paper, we analyze the application of Interactive Data Broadcasting in DMB(Digital Multimedia Broadcasting) in the accordance with convergence of service and technology. With the acceleration of digital convergence in the Ubiquitous period substantial development of digital media technology and convergence of broadcasting and telecommunication industry are being witnessed. Consequently these results gave rise to newly combined-products such as DMB(Digital Multimedia Broadcasting), WCDMA(Wide-band code division multiple access), Wibro(Wireless Broadband Internet), IP-TV (Internet protocol TV) and HSDPA(High speed downlink packet access). The preparatory stage for the implementation of Interactive Data Broadcasting Service will be reached by the end of December, 2006. DMB is the first result of a successful convergence service between Broadcasting and Telecommunication in new media era. Multimedia technology and services are the core elements of DMB. The Data Broadcasting will not only offer various services of interactive information such News, Weather, Broadcasting Program etc, but also be linked with characteristic function of mobile phone such as calling and SMS(Short Message Service) via Return Channel.

Capacity of synchronous DS-CDMA system on frequency selective multipath fading channels with imperfect power control (주파수 선택적 다중 경로 페이딩 채널에서 불완전 전력 제어를 고려한 동기식 DS-CDMA 시스템의 수용 용량)

  • 황승훈;김용석;김동희;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3A
    • /
    • pp.342-350
    • /
    • 2000
  • In this paper, the bit error performance for the reverse link of a synchronous direct sequence code division multiple access (DS-CDMA) system employing an imperfect power control scheme over a frequency selective Rayleigh fading channel is analyzed. The system capacity degradation due to power control error (PCE), which is approximated by a log-normally distributed random variable, is estimate as a function of a standard deviation of the PCE. In addition, the impact of the multipath intensity profile (MIP) shape and the number of resolvable paths on the performance of the synchronous transmission is investigated. To estimate the system capacity, the coded bit error performance is evaluated and compared with the conventional CDMA. It is found tat synchronous transmission has less sensitivity to imperfect power control and eases the power control requirements. In particular, as the decay constant $\delta$ of MIP increases, the synchronous transmission in the DS-CDMA reverse link results in a significant BER improvement over the asynchronous transmission even in the presence of imperfect power control. We further conclude that the capacity can be improved by employing the synchronous transmission.

  • PDF

Effect Analysis of Residual Frequency Offsets for Asynchronous MC-CDMA Uplink Systems (비동기 MC-CDMA 상향 링크 시스템에서의 잔류 주파수 옵셋 영향 분석)

  • Ko, Kyun-Byoung;Woo, Choong-Chae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.8
    • /
    • pp.9-15
    • /
    • 2010
  • This paper presents an analysis of asynchronous multicarrier-code division multiple access (MC-CDMA) uplink systems over frequency-selective multipath fading channels when the frequency offsets (FOs) of all users are random variables and the frequency offset for the desired user is compensated. The effect of a residual frequency offset(RFO) on the average bit error rate (BER) is evaluated by the semi-analytical method, then the approximated BER performance is obtained as a closed-form expression. Moreover, the signal to noise ratio (SNR) loss caused by RFO is evaluated. Derived results show that the performance degradation due to RFO is negligible if the estimation error of RFO for the desired user is less than the normalized value of 0.1.

Reverse link rate control for high-speed wireless systems based on traffic load prediction (고속 무선통신 시스템에서 트래픽 부하 예측에 의한 역방향 전송속도 제어)

  • Yeo, Woon-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.11
    • /
    • pp.15-22
    • /
    • 2008
  • The cdma2000 1xEV-DO system controls the data rates of mobile terminals based on a binary overload indicator from the base station and a simple probabilistic model. However, this control scheme has difficulty in predicting the future behavior of mobile terminals due to a probabilistic uncertainty and has no reliable means of suppressing the traffic overload, which may result in performance degradation of CDMA systems that have interference-limited capacity. This Paper proposes a new traffic control scheme that controls the data rates of mobile terminals effectively by predicting the future traffic load and adjusting the forward-link control channel. The proposed scheme is analyzed by modeling it as a multi-dimensional Markov process and compared with conventional schemes. The numerical results show that the maximum cell throughput of the proposed scheme is much higher than those of the conventional schemes.

An LDC-based MU-MIMO System with Pre-coding for Interference Cancellation and Robust Reception (간섭 제거와 수신 성능 향상을 위한 전처리기법을 적용한 LDC기반의 다중 사용자 다중 입출력 시스템)

  • Park, Myung Chul;Jo, Bong-Gyun;Han, Dong Seog
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.17-25
    • /
    • 2013
  • In this paper, a coding algorithm is proposed for multi-user multi-input multi-output (MU-MIMO) systems to improve the reception performance in fading conditions without reducing the bandwidth efficiency. The space division multiple access (SDMA) scheme that is one of the commonly used for MU-MIMO systems is vulnerable to the fading. The space time block code (STBC) scheme that is used to overcome the fading has a disadvantage of reduced throughput. The proposed MU-MIMO system first encodes transmitted symbols by linear dispersion code (LDC) which is less vulnerable to the fading and increases the throughput in proportional to the number of transmit antennas. Then, the LDC coded symbols are pre-coded by the result of singular value decomposition (SVD) of the estimated channel gain. We evaluate the performance of the proposed scheme compared with the conventional algorithms by computer simulations.

Cell Edge SINR of Multi-cell MIMO Downlink Channel (다중 셀 MIMO 하향채널의 셀 에지 SINR)

  • Park, Ju-Yong;Kim, Ki-Jung;Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.105-117
    • /
    • 2015
  • In this paper, we consider 19 cells with the two tiers for polar-rectangular coordinates (PRCs) and provide the cell edge performance of cellular networks based on distance from cell center i.e., BS (base station). When FFR is applied(or adopted) to cell edge, it is expected that BS cooperation, or a coordinated multipoint (CoMP) multiple access strategy will further improve the system performance. We proposed a new method to evaluate the sum rate capacity of the MIMO DC of multicell system. We improve the performance of cell edge users for intercell interference cancelation in cooperative downlink multicell systems. Simulation results show that the proposed scheme outperforms the reference schemes, in terms of cell edge SINR (signal-to-interference-noise ratio) with a minimal impact on the network path loss exponent. We show 13 dB improvements in cell-edge SINR by using reuse of three relative to reuse of one. BS cooperation has been proposed to mitigate the cell edge effect.

Design of a High Power Asymmetric Doherty Amplifier with a Linear Dynamic Range Characteristic (선형적인 동적 영역 특성을 갖는 고출력 비대칭 도허티 전력 증폭기의 설계)

  • Lee Ju-Young;Kim Ji-Yeon;Lee Dong-Heon;Kim Jong-Heon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.6 s.109
    • /
    • pp.538-545
    • /
    • 2006
  • In this paper, an asymmetric high power extended Doherty amplifier for WCDMA base-station applications is presented. The amplifier has an extended peak efficiency over 9 dB of output power and a linear dynamic range characteristic. To realize the peak efficiency extension and linear dynamic range characteristic, a two times larger peaking device compared to the main device, and an unequal power divider are used. From the experimental results of 1FA WCDMA signal, this amplifier has an efficiency of 31 % and an ACLR of -35 dBc is achieved at 9 dB back-off from P1 dB.

Enhancing IEEE 802.11 Power Saving Mechanism (PSM) with a Time Slotted Scheme (시분할 방법에 의한 IEEE 802.11 전력관리 메커니즘의 성능향상)

  • Lei, Xiaoying;Rhee, Seung Hyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.8
    • /
    • pp.679-686
    • /
    • 2013
  • Power efficiency becomes more important in wireless LANs as the mobile stations send more data with limited batteries. It has been known that the IEEE 802.11 PSM is not efficient in high load networks: AP cannot deliver buffered packets to a PS station immediately and it can lead the station to stay in active state quite long and result in energy waste. Moreover, it is inefficient that only one data frame is retrieved by a PS-POLL frame. In this paper, we propose a time slotted scheme to enhance the PSM, in which a mobile station can reserve time slots to receive data frames. Our mechanism can reduce collisions by reservation and decrease the channel occupancy by transmitting multiple data frames via one PS-POLL. The analytic model and simulation results show that proposed scheme reduces power consumption significantly and enhances the performance of PSM.