• 제목/요약/키워드: multiphase

검색결과 429건 처리시간 0.02초

The Effect of Second Order Refraction on Optical Bubble Sizing in Multiphase Flows

  • Qiu, Huihe;Hsu, Chin-Tsau;Liu, Wei
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1801-1807
    • /
    • 2001
  • In multiphase flne the bubble size and velocity. To achieve this, one of approaches is to utilize laser phase-Doppler anemometry. However, it was found that the second order refraction has great impact on PDA sizing method when the relative refractive index of media is less than one. In this paper, the problem of second order refraction is investigated and a model of phase-size correlation to eliminate the measurement errors is introduced for bubble sizing. As a result, the model relates the assumption of single scattering mechanism in conventional phase-Doppler anemometry. The results of simulations based on this new model by using Generalized Lorenz Mie Theory (GLMT) are compared with those based on the conventional method. An optimization method for accurately sizing air-bubble in water has been suggested.

  • PDF

Numerical simulation of wave slamming on wedges and ship sections during water entry

  • Ma, Zhihua;Qian, Ling
    • Ocean Systems Engineering
    • /
    • 제8권2호
    • /
    • pp.183-199
    • /
    • 2018
  • The open source software OpenFOAM is utilised to simulate the water entry and hydrodynamic impact process of 2D wedges and ship hull sections. Incompressible multiphase flow solver interDyMFoam is employed to calculate the free fall of structure from air into water using dynamically deforming mesh technique. Both vertical and oblique entry of wedges of various dead-rise angles have been examined. A convergence study of dynamics as well as kinematics of the flow problem is carried out on successively refined meshes. Obtained results are presented and compared to the experimental measurements showing good agreement and reasonable mesh convergence of the solution.

Regulation of Star Formation in Turbulent, Multiphase Interstellar Media

  • 김창구;김웅태
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.66.1-66.1
    • /
    • 2010
  • Using two-dimensional numerical hydrodynamic simulations, we investigate the star formation rate (SFR) in turbulent, multiphase, galactic gaseous disks. Our simulation domain is axisymmetric, and local in the radial direction and global in the vertical direction. Our models include galactic rotation, vertical density stratification, self-gravity, radiative heating and cooling, and thermal conduction, but do not include spiral-arm features. Turbulence in our models is driven by momentum feedback from supernova explosion events occurring in localized dense regions formed by thermal and gravitational instabilities. Self-consistent radiative heating, representing enhanced/reduced FUV photons from the star formation, is also taken into account. By controlling three parameters (the gas surface density, the stellar disk density, and the angular rotation rate) that characterize local galactic disks, we explore how the SFR depends on the background environmental state. We also discuss the relation between the SFR and the gas surface density found in our numerical models in comparison with observations.

  • PDF

Regulation of Star Formation Rates in Multiphase Galactic Disks: Numerical Tests of the Thermal/Dynamical Equilibrium Model

  • Kim, Chang-Goo;Kim, Woong-Tae;Ostriker, Eve C.
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.74.1-74.1
    • /
    • 2010
  • Using two-dimensional numerical hydrodynamic simulations, we investigate the regulation of star ormation rates in turbulent, multiphase, galactic gaseous disks. Our simulation domain is xisymmetric, and local in the radial direction and global in the vertical direction. Our models nclude galactic rotation, vertical stratification, self-gravity, heating and cooling, and thermal onduction. Turbulence in our models is driven by momentum feedback from supernova events ccurring in localized dense regions formed by thermal and gravitational instabilities. Self-onsistent radiative heating, representing enhanced/reduced FUV photons from the star formation, s also taken into account. Evolution of our model disks is highly dynamic, but reaches a quasi-teady state. The disks are overall in effective hydrostatic equilibrium with the midplane thermal ressure set by the vertical gravity. The star formation rate is found to be proportional pproximately linearly to the midplane thermal pressure. These results are in good agreement with the predictions of a recent theory by Ostriker, McKee, and Leroy (2010) for the thermal/dynamic equilibrium model of star formation regulation.

  • PDF

벽면흡착에 의해 야기되는 유동 수치해석 (NUMERICAL SIMULATION OF FLOWS INDUCED BY WALL ADHESION)

  • 명현국
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.2-5
    • /
    • 2011
  • This paper presents a numerical study on multiphase flows induced by wall adhesion The CSF(Continuum Surface Force} model is used for the calculation of the surface tension force and implemented in an in-house solution code(PowerCFD). The present method(code) employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with volume capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing As an application of the present method, the effects of wall adhesion are numerically simulated with the CSF model for a shallow pool of water located at the bottom of a cylindrical tank. Two different cases are computed, one in which the water wets the wall and one in which the water does not wet the wall. It is found that the present method simulates efficiently and accurately surface tension-dominant multiphase flows induced by wall adhesion.

  • PDF

NUFLEX의 다상유동 해석 (NUMERICAL ANALYSIS OF MULTIPHASE FLOW BY NUFLEX)

  • 손기헌;서영호;유태진;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.95-98
    • /
    • 2007
  • A general purpose program NUFLEX has been extended for two-phase flows with topologically complex interface and cavitation flows with liquid-vapor phase change caused by large pressure drop. In analysis of two-phase flow, the phase interfaces are tracked by employing a LS(Level Set) method. Compared with the VOF(Volume-of-Fluid} method based on a non-smooth volume-fraction function, the LS method can calculate an interfacial curvature more accurately by using a smooth distance function. Also, it is quite straightforward to implement for 3-D irregular meshes compared with the VOF method requiring much more complicated geometric calculations. Also, the cavitation process is computed by including the effects of evaporation and condensation for bubble formation and collapse as well as turbulence in flows. The volume-faction and continuity equations are adapted for cavitation models with phase change. The LS and cavitation formulation are implemented into a general purpose program for 3-D flows and verified through several test problems.

  • PDF

Multiphase Flow Modeling of Molten Material-Vapor-Liquid Mixtures in Thermal Nonequilibrium

  • Park, Ik-Kyu;Park, Goon-Cherl;Bang, Kwang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제14권5호
    • /
    • pp.553-561
    • /
    • 2000
  • This paper presents a numerical model of multi phase flow of the mixtures of molten material-liquid-vapor, particularly in thermal nonequilibrium. It is a two-dimensional, transient, three-fluid model in Eulerian coordinates. The equations are solved numerically using the finite difference method that implicitly couples the rates of phase changes, momentum, and energy exchange to determine the pressure, density, and velocity fields. To examine the model's ability to predict an experimental data, calculations have been performed for tests of pouring hot particles and molten material into a water pool. The predictions show good agreement with the experimental data. It appears, however, that the interfacial heat transfer and breakup of molten material need improved models that can be applied to such high temperature, high pressure, multi phase flow conditions.

  • PDF

다상 격자 볼츠만 방법을 이용한 수조 핵비등 직접 수치 모사: 예비 연구 (Direct Numerical Simulation of the Nucleate Pool Boiling Using the Multiphase Lattice Boltzmann Method : Preliminary Study)

  • 유승엽;고성호
    • 한국유체기계학회 논문집
    • /
    • 제14권6호
    • /
    • pp.45-53
    • /
    • 2011
  • Multiphase lattice Boltzmann method (LBM) has been used to simulate the nucleate pool boiling directly. For the phase change model, the thermal model and the Stefan boundary condition were introduced to the isothermal LBM. The phase change model was validated by the bubble growth in a superheated liquid under no gravity. The bubble growth on and departure from a superheated wall has been simulated successfully. The preliminary results showed that the detail process of nucleate pool boiling was in good agreement with the experimental results.

Lattice-Boltzmann Method를 이용한 2차원 기체-액체간 거동 기초 연구 (Feasibility Study on the Gas-Liquid Multiphase by Lattice-Boltzmann Method in Two-Dimensions)

  • 정노택
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제19권2호
    • /
    • pp.111-119
    • /
    • 2016
  • 기체-액체 이상유동의 거동 시뮬레이션을 위해 Lattice Boltzmann방법(LBM)을 이용하였다. 기체-액체사이의 경계면에서 상호포텐셜 모델인 Shen-Chan방식과 Carnahan-Starling 상태방정식을 도입하였다. 또한 외력항의 처리는 Exact Difference Method를 사용하였다. 개발된 코드를 통하여 상태방정식 특성파악, 기체-액체의 상분리, 표면장력 및 기체 액체 경계면 거동 특성, Homogeneous와 Heterogeneous 캐비테이션, 기포 붕괴등의 시뮬레이션을 수행하였다.

불포화 토양내에서 가스상 오존 이동특성에 대한 Multiphase liquids의 영향

  • 정해룡;최희철
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.124-127
    • /
    • 2003
  • Laboratory scale experiments on in-situ ozonation were carried out to delineate the effects of liquid phases, such as soil water and nonaqeous phase liquid (NAPL) on the transport of gaseous ozone in unsaturated soil. Soil water enhanced the transport of ozone due to water film effect, which prevent direct reaction between soil particles and gaseous ozone, and increased water content reduced the breakthrough time of ozone because of increased average linear velocity of ozone and decreased air-water interface area. Diesel fuel as NAPL also played a similar role with water film, so the breakthrough time of ozone in diesel-contaminated soil was significantly reduced compared with uncontaminated soil. However, ozone breakthrough time was retarded with increased diesel concentration, because of high reactivity of diesel fuel with ozone. In multiphase liquid system of unsaturated soil, the ozone transport was mainly Influenced by nonwetting fluid, diesel fuel in this study.

  • PDF