• Title/Summary/Keyword: multimode interference

Search Result 47, Processing Time 0.023 seconds

Design of a low loss NxN waveguide grating router composed of multimode interference couplers and arrayed waveguide grating (다중모드 간섭결합기와 광도파로열로 구성된 저손실 NxN광도파로 격자 파장 라우터의 설계)

  • 문성욱;정영철
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.7
    • /
    • pp.79-87
    • /
    • 1997
  • Untill now, the most well-known cofiguration for waveguide grating router(WGR) is composed of radiative star couplers and arrayed waveguide grating(AWG), which usually suffer form the rdiation loss of around 3dB or more. Therefore, te improved design of WGRs is needed to reduce the loss. In ths paper, we propose a novel WGR composed of multimode interference couplers which have good unifiormity, fabrication tolerance, and very low excess loss, and suggest the efficient algorithm to find the proper path length differences of AWG for given channel spacing and channel assignment to each output prot. The simulated spectral responses of the proposed WGR using the finite difference beam propagation method (BPM) show that the excess loss is less than 0.3dB and the crosstalk less than -25dB in case of 4x4 WGR, and the excess loss less than 0.4dB and the crosstalk less than -25dB in case of 8x8 WGR for all the channel wavelengths.

  • PDF

Design of Optical Multimode Interference Couplers with Ultracompact Propagating Width (초소형 전송폭을 갖는 광 다중모드 간섭결합기의 설계)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.47-52
    • /
    • 2011
  • In this paper, to evaluate the design properties of 3D optical multimode interference (MMI) couplers with ultracompact width, modal transmission line theory and effective dielectric method are combined with together. A coupling efficiency based on the composed approach is defined, and the coupling length is numerically determined for the design of 3 dB coupler, cross coupler and bar coupler. The simulation result shows that the designed MMI coupler has a low insertion loss and a high splitting ratio.

Multimode interference coupled ring resonator using half ring and total internal reflection mirrors (반 링과 전반사 미러를 이용한 다중모드 간섭기로 결합된 링 공진기)

  • Kim, Doo-Gun;Choi, Young-Wan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.46-54
    • /
    • 2007
  • We have fabricated and characterized MMI (Multimode Interference) coupled ring resonator with the total internal reflection mirrors and the semiconductor optical amplifier for the integration of the WDM (Wavelength Division Multiplexing) system. The TIR (Total Internal Reflection) mirrors were fabricated by self-aligned process and had losses of about 0.71 dB per mirror. Coupling in and out of a resonator was achieved using the extremely small MMI couplers. The MMI length and width used in the experiment were $119{\mu}m$ and $9{\mu}m$, respectively. The resulting FSR (Free Spectral Range) and on-off ratio were approximately 1.333 nm (162 GHz) and 13 dB, respectively.

Realization of Plasmonic Adaptive Coupler using Curved Multimode Interference Waveguide (곡면형 다중모드 간섭 도파로를 사용한 플라즈마 적응 결합기의 구현)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.165-170
    • /
    • 2016
  • Nano-scale power splitter based on curved plasmonic waveguides are designed by utilizing the multimode interference (MMI) coupler. To analyze easily the adaptive properties of plasmonic curverd multimode interference coupler(PC-MMIC), the curved form transforms equivalently into a planar form by using conformal transformation method. Also, effective dielectric method and longitudinal modal transmission-line theory are used for simulating the light propagation and optimizing the structural parameters at 3-D guiding geometry. The designed $2{\times}2$ PC-MMIC does not work well for quasi-TM mode case due to the bending structure, and it does not exist 3dB coupling property, in which the power splitting ratio is 50%:50%, for quasi-TE mode case. Further, the coupling efficiency is better when the signal is incident at channel with large curvature radius than small curvature radius.

Implementation of Novel Bio-sensor Platform based on Optical MMI and Directional Coupler (광 MMI와 방향성 결합기에 기초한 새로운 바이오 센서 플랫폼의 구현)

  • Kwang-Chun Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.163-168
    • /
    • 2023
  • In this paper, a novel platform for chemical sensing and biosensing is presented. The working principle is based on the coupling efficiency and interference properties of optical directional coupler (DC) and multimode interference coupler (MMIC). It has been realized using planar technology to allow integration on a silicon substrate. Firstly, the dispersion curves of DC and MMIC is described, and the design specification of an optimized slot optical waveguide to increase waveguide sensitivity is selected. Next, the sensor response to the refractive index change of sensing analyte is numerically simulated. The numerical results reveal that high effective index change per refractive index unit (RIU) change of analyte is obtained, and the sensitivity can be tuned using the DC and MMIC design technique.

A Study on the Design and Performance of Integrated-Optic Biosensor utilizing the Multimode Interferometer based on Si3N4 Rib-Optical Waveguide and Evanescent-Wave (Si3N4 립-광도파로 기반 다중모드 간섭기와 소산파를 이용하는 집적광학 바이오센서 설계 및 성능에 관한 연구)

  • Jung, Hong sik
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.409-418
    • /
    • 2020
  • In this paper, an integrated optical, evanescent-wave biosensor utilizing a multimode interferometer based on a Si3N4 rib-optical waveguide consisting of the Si/SiO2/Si3N4/SiO2 stacked structure was described. The theoretical background of the multimode interferometer was reviewed, and the structure and design process were presented through numerical computational analysis. We analyzed how the dimension (length, width) of the multimode interferometer affected the sensor performance. It has been confirmed through computational analysis that the changes in the refractive index of an analyte greatly affect the mode pattern formation position and output optical power of a multimode interferometer, and proved that this principle could be applied to integrated-optic biosensor.

Novel Design Concept for Compact MMI Couplers (소형 다중모드 간섭 결합기의 새로운 설계 개념)

  • Ho, Kwang-Chun
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.305-306
    • /
    • 2009
  • This paper shows through detailed simulations that the length of conventionally designed multimode-interference couplers can be shorted significantly by stepped-width and stepped-index design. For the cross-coupling device, this stepped-design results in 9% or more length reduction.

  • PDF

A Study of the Optical Fiber Sensor for sensing impact and pressure (광섬유를 이용한 충격 및 압력 센서에 관한 연구)

  • 양승국;조희제;이석정;전중성;오상기;김인수;오영환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.1
    • /
    • pp.129-135
    • /
    • 2003
  • Optical fiber has many advantages, such as high reliability, long lifetime, immunity to the electromagnetic interference, high speed response and low cost. In this study, we proposed and developed an optical fiber impact and pressure sensor for prevention of accident which occurs in the automatic system or auto door. The principle of the sensor is to detect different optical intensity caused by variation of a speckle pattern due to the external perturbation. Speckle pattern appears at the end of a multimode fiber in which coherent beam propagates. The fabricated sensor in this study was tested. As a result of experiments, amplitude of the output signal isn't linear, but it has sufficient sensitivity for a sensor. Moreover, we can control sensitivity of the sensor by an amplifier at receiver. It has several advantages which are ability of detection at all point on the multimode fiber, large sensitive area, and many application areas for a sensing impact and pressure.

Rectangular ring resonator with optimum multimode inteference (최적의 다중모드 간섭기로 결합된 직사각형 링 공진기)

  • Kim, Doo-Gun;Choi, Woon-Kyung;Choi, Young-Wan;Yi, Jong-Chang
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.26-35
    • /
    • 2007
  • We characterized the properties of the fabricated filter with the total internal reflection mirror (TIR) in the rectangular ring resonator and very small multimode interference (MMI) couplers on an InP material platform for photonic integrated circuits. Coupling power in and out of a resonator is increased by using an optimum MMI length of 110 ${\mu}m$ and a width of 9 ${\mu}m$, respectively. The semiconductor optical amplifier with the length of 120 ${\mu}m$ is integrated in the resonator to compensate the loss of the internal waveguide and the TIR mirror. A free spectral range of approximately 2 nm (244 GHz) is observed with an on-off ratio of 13 dB. The curve fitting also yields the power coupled per pass as 42%. To reach critical coupling at this coupling level would require a round trip loss of about 2.4 dB.

Design and Analysis of a Red-Green-Blue Beam Combiner Based on Multimode Waveguides (다중 모드 도파로를 이용한 적녹청 빔 합파기 설계 및 분석)

  • Chung, Youngchul
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.2
    • /
    • pp.105-110
    • /
    • 2020
  • A compact beam combiner based on two-mode interference (TMI) in multimode waveguides is proposed, and its feasibility is shown through simulation with the three-dimensional beam propagation method. The input waveguides are separated by about 1 ㎛ at the interface with the multimode waveguide, so that the fabricated waveguide pattern is well repeated. The power transmission to the output port from the red, green, and blue input port is 93.5%, 94%, and 93%, respectively. When the wavelength deviation from a center wavelength is 10 nm, the power transmission is maintained to be greater than 90%. When the waveguide width error is 40 nm, the power transmission is maintained to be greater than 85% for all the three colors. The polarization dependence of the beam combiner is almost negligible, and its size is as tiny as 0.02 × 4 ㎟.