• Title/Summary/Keyword: multimedia processors

Search Result 72, Processing Time 0.021 seconds

A Novel Reconfigurable Processor Using Dynamically Partitioned SIMD for Multimedia Applications

  • Lyuh, Chun-Gi;Suk, Jung-Hee;Chun, Ik-Jae;Roh, Tae-Moon
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.709-716
    • /
    • 2009
  • In this paper, we propose a novel reconfigurable processor using dynamically partitioned single-instruction multiple-data (DP-SIMD) which is able to process multimedia data. The SIMD processor and parallel SIMD (P-SIMD) processor, which is composed of a number of SIMD processors, are usually used these days. But these processors are inefficient because all processing units (PUs) should process the same operations all the time. Moreover, the PUs can process different operations only when every SIMD group operation is predefined. We propose a processor control method which can partition parallel processors into multiple SIMD-based processors dynamically to enhance efficiency. For performance evaluation of the proposed method, we carried out the inverse transform, inverse quantization, and motion compensation operations of H.264 using processors based on SIMD, P-SIMD, and DP-SIMD. Experimental results show that the DP-SIMD control method is more efficient than SIMD and P-SIMD control methods by about 15% and 14%, respectively.

Design and Verification of High-Performance Parallel Processor Hardware for JPEG Encoder (JPEG 인코더를 위한 고성능 병렬 프로세서 하드웨어 설계 및 검증)

  • Kim, Yong-Min;Kim, Jong-Myon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.2
    • /
    • pp.100-107
    • /
    • 2011
  • As the use of mobile multimedia devices is increasing in the recent year, the needs for high-performance multimedia processors are increasing. In this regard, we propose a SIMD (Single Instruction Multiple Data) based parallel processor that supports high-performance multimedia applications with low energy consumption. The proposed parallel processor consists of 16 processing elements(PEs) and operates on a 3-stage pipelining. Experimental results for the JPEG encoding algorithm indicate that the proposed parallel processor outperforms conventional parallel processors in terms of performance and energy efficiency. In addition, the proposed parallel processor architecture was developed and verified with verilog HDL and a FPGA prototype system.

Multimedia Features at Mobile Handsets in Near Future

  • Eom, Min-Young;Lee, N.S.
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1051-1052
    • /
    • 2008
  • As the mobile phone has multi functions and high performance, multimedia processors have an important roles in handsets. Recently high resolution camera (above 5M pixels), HD Camcording and beautiful UI which Using OpenVG or OpenGL are adopted in mobile phone. So we are introduced the function multimedia processor and guide to mobile phone engineers to meet multimedia features.

  • PDF

Dual-Port SDRAM Optimization with Semaphore Authority Management Controller

  • Kim, Jae-Hwan;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.84-92
    • /
    • 2010
  • This paper proposes the semaphore authority management (SAM) controller to optimize the dual-port SDRAM (DPSDRAM) in the mobile multimedia systems. Recently, the DPSDRAM with a shared bank enabling the exchange of data between two processors at high speed has been developed for mobile multimedia systems based on dual-processors. However, the latency of DPSDRAM caused by the semaphore for preventing the access contention at the shared bank slows down the data transfer rate and reduces the memory bandwidth. The methodology of SAM increases the data transfer rate by minimizing the semaphore latency. The SAM prevents the latency of reading the semaphore register of DPSDRAM, and reduces the latency of waiting for the authority of the shared bank to be changed. It also reduces the number of authority requests and the number of times authority changes. The experimental results using a 1 Gb DPSDRAM (OneDRAM) with the SAM controllers at 66 MHz show 1.6 times improvement of the data transfer rate between two processors compared with the traditional controller. In addition, the SAM shows bandwidth enhancement of up to 38% for port A and 31% for port B compared with the traditional controller.

Multimedia Extension Instructions and Optimal Many-core Processor Architecture Exploration for Portable Ultrasonic Image Processing (휴대용 초음파 영상처리를 위한 멀티미디어 확장 명령어 및 최적의 매니코어 프로세서 구조 탐색)

  • Kang, Sung-Mo;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.8
    • /
    • pp.1-10
    • /
    • 2012
  • This paper proposes design space exploration methodology of many-core processors including multimedia specific instructions to support high-performance and low power ultrasound imaging for portable devices. To explore the impact of multimedia instructions, we compare programs using multimedia instructions and baseline programs with a same many-core processor in terms of execution time, energy efficiency, and area efficiency. Experimental results using a $256{\times}256$ ultrasound image indicate that programs using multimedia instructions achieve 3.16 times of execution time, 8.13 times of energy efficiency, and 3.16 times of area efficiency over the baseline programs, respectively. Likewise, programs using multimedia instructions outperform the baseline programs using a $240{\times}320$ image (2.16 times of execution time, 4.04 times of energy efficiency, 2.16 times of area efficiency) as well as using a $240{\times}400$ image (2.25 times of execution time, 4.34 times of energy efficiency, 2.25 times of area efficiency). In addition, we explore optimal PE architecture of many-core processors including multimedia instructions by varying the number of PEs and memory size.

Implementation and Verification of a Multi-Core Processor including Multimedia Specific Instructions (멀티미디어 전용 명령어를 내장한 멀티코어 프로세서 구현 및 검증)

  • Seo, Jun-Sang;Kim, Jong-Myon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • In this paper, we present a multi-core processor including multimedia specific instructions to process multimedia data efficiently in the mobile environment. Multimedia specific instructions exploit subword level parallelism (SLP), while the multi-core processor exploits data level parallelism (DLP). These combined parallelisms improve the performance of multimedia processing applications. The proposed multi-core processor including multimedia specific instructions is implemented and tested using a Xilinx ISE 10.1 tool and SoCMaster3 testbed system including Vertex 4 FPGA. Experimental results using a fire detection algorithm show that multimedia specific instructions outperform baseline instructions in the same multi-core architecture in terms of performance (1.2x better), energy efficiency (1.37x better), and area efficiency (1.23x better).

Color Media Instructions for Embedded Parallel Processors (임베디드 병렬 프로세서를 위한 칼라미디어 명령어 구현)

  • Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.7
    • /
    • pp.305-317
    • /
    • 2008
  • As a mobile computing environment is rapidly changing, increasing user demand for multimedia-over-wireless capabilities on embedded processors places constraints on performance, power, and sire. In this regard, this paper proposes color media instructions (CMI) for single instruction, multiple data (SIMD) parallel processors to meet the computational requirements and cost goals. While existing multimedia extensions store and process 48-bit pixels in a 32-bit register, CMI, which considers that color components are perceptually less significant, supports parallel operations on two-packed compressed 16-bit YCbCr (6 bit Y and 5 bits Cb, Cr) data in a 32-bit datapath processor. This provides greater concurrency and efficiency for YCbCr data processing. Moreover, the ability to reduce data format size reduces system cost. The reduction in data bandwidth also simplifies system design. Experimental results on a representative SIMD parallel processor architecture show that CMI achieves an average speedup of 6.3x over the baseline SIMD parallel processor performance. This is in contrast to MMX (a representative Intel's multimedia extensions), which achieves an average speedup of only 3.7x over the same baseline SIMD architecture. CMI also outperforms MMX in both area efficiency (a 52% increase versus a 13% increase) and energy efficiency (a 50% increase versus an 11% increase). CMI improves the performance and efficiency with a mere 3% increase in the system area and a 5% increase in the system power, while MMX requires a 14% increase in the system area and a 16% increase in the system power.

Hardware Design and Implementation of a Parallel Processor for High-Performance Multimedia Processing (고성능 멀티미디어 처리용 병렬프로세서 하드웨어 설계 및 구현)

  • Kim, Yong-Min;Hwang, Chul-Hee;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.5
    • /
    • pp.1-11
    • /
    • 2011
  • As the use of mobile multimedia devices is increasing in the recent year, the needs for high-performance multimedia processors are increasing. In this regard, we propose a SIMD (Single Instruction Multiple Data) based parallel processor that supports high-performance multimedia applications with low energy consumption. The proposed parallel processor consists of 16 processing elements (PEs) and operates on a 3-stage pipelining. Experimental results indicated that the proposed parallel processor outperforms conventional parallel processors in terms of performance. In addition, our proposed parallel processor outperforms commercial high-performance TI C6416 DSP in terms of performance (1.4-31.4x better) and energy efficiency (5.9-8.1x better) with same 130nm technology and 720 clock frequency. The proposed parallel processor was developed with verilog HDL and verified with a FPGA prototype system.

VLIW architecture for compensating simple bypassing paths (간단한 바이패싱 회로를 보상하는 VLIW 구조)

  • 김석주
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.27-32
    • /
    • 2002
  • 본 논문에서는 NOP 이 차지하는 슬롯에 의미 있는 명령어를 중복 할당하여 자료의존 관계를 해소하고 프로그램 실행 사이클을 단축시키는 명령어 중복 스케줄링 기법을 적용할 수 있는 VLIW 구조인 TiPs(Tiny Processors) 구조를 제안하였으며 TiPs는 회로의 복잡도를 증가시키지 않으면서 실행시간을 단축시켜 가상의 바이패싱 회로를 추가한 효과를 얻을 수 있다. 실험 결과 TiPs에서 명령어 중복 스케줄링 기법을 적용할 경우 8% ~ 25%의 성능 향상 효과가 있음을 알 수 있었다.

  • PDF

Algorithm for Deadlock Prevention of Generalized Philosophers' Dining Problem (일반화된 철학자 만찬 문제의 교착상태 예방 알고리즘)

  • Sang-Un Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.73-78
    • /
    • 2023
  • The dining philosophers problem(DPP) is that five philosophers sit around a round table and eat spaghetti(or noodles) together, where they must have a pair of chopsticks(two) on both sides of them to eat, and if all philosophers have one chopstick on the right, no one can eat because the deadlock occurs. Deadlocks are a problem that frequently occur in parallel systems, and most current operating systems(OS) cannot prevent it. This paper proposes a silver bullet that causes no deadlock in an OS where all processors of 2≤n≤∞ have multiple parallel processing capabilities. The proposed method is a group round-robin method in which ⌊n/2⌋ odd processors form a group and perform simultaneously, and shift right to the next processor when execution ends. The proposed method is to perform two times for even processors, three times for odd processors per one round-robin. If the proposed method is performed n times, even-numbered processors perform n/2 times and odd-numbered processors perform (n-1)/2-times.