• Title/Summary/Keyword: multimedia learning

Search Result 1,219, Processing Time 0.025 seconds

A Study on Factors Affecting Users' Satisfaction Level in Using PMP for Learning Purpose (학습목적의 PMP사용자에 대한 만족도 영향요인 분석)

  • Um, Myoungyong;Kim, Mi-Ryang
    • The Journal of Korean Association of Computer Education
    • /
    • v.10 no.1
    • /
    • pp.77-88
    • /
    • 2007
  • More flexible learning models are needed, and learning environments that operate through mobile technologies such as portable multimedia players(PMP) provide useful tools in implementing these learning models. The main attractant of PMP is often their versatility: being able to load and play different formats of video, audio, digital images, and interactive media. In this paper, we investigate the factors influencing the usage and acceptance of the PMP for study, based on the extended version of the Technology Acceptance Model (TAM). Based on data collected from online survey, we show that perceived usefulness, perceived ease of use, flow and perceived enjoyment are the major determinants for users to play PMP for study purpose. Factors, including ease of use, contents-credibility are shown to determine the level of perceived usefulness; additionally, perceived usefulness, ease of use and perceived enjoyment are shown to directly affect the level of flow. Based upon the statistical results, some useful guidelines for developing learning contents are also provided.

  • PDF

A Study on Development of Multimedia Contents for the Web-based Education System (웹기반의 교육체계를 위한 멀티미디어콘텐츠 개발에 관한 연구)

  • Jung, Won-Ju
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.1 no.1
    • /
    • pp.31-38
    • /
    • 2001
  • This study is to investigates a development of multimedia contents for the web-based education system. With the comming new millenieum, we have a lot of experience in pluralistic society. especially we are affected by multimedia data with information and knowledge-based society, and the development of information technology, that is we are a lot influenced by multimedia data. This study is to explore multimedia contents which have still and dynamic. With this discussed, teaching and learning from multimedia contents makes learners construct meaning knowledge through the seeing and hearing, interactive communication. thus we need to include the multimedia education in a curriculum.

  • PDF

Deep Learning Based 3D Gesture Recognition Using Spatio-Temporal Normalization (시 공간 정규화를 통한 딥 러닝 기반의 3D 제스처 인식)

  • Chae, Ji Hun;Gang, Su Myung;Kim, Hae Sung;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.5
    • /
    • pp.626-637
    • /
    • 2018
  • Human exchanges information not only through words, but also through body gesture or hand gesture. And they can be used to build effective interfaces in mobile, virtual reality, and augmented reality. The past 2D gesture recognition research had information loss caused by projecting 3D information in 2D. Since the recognition of the gesture in 3D is higher than 2D space in terms of recognition range, the complexity of gesture recognition increases. In this paper, we proposed a real-time gesture recognition deep learning model and application in 3D space using deep learning technique. First, in order to recognize the gesture in the 3D space, the data collection is performed using the unity game engine to construct and acquire data. Second, input vector normalization for learning 3D gesture recognition model is processed based on deep learning. Thirdly, the SELU(Scaled Exponential Linear Unit) function is applied to the neural network's active function for faster learning and better recognition performance. The proposed system is expected to be applicable to various fields such as rehabilitation cares, game applications, and virtual reality.

Fuzzy Supervised Learning Algorithm by using Self-generation (Self-generation을 이용한 퍼지 지도 학습 알고리즘)

  • 김광백
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.7
    • /
    • pp.1312-1320
    • /
    • 2003
  • In this paper, we consider a multilayer neural network, with a single hidden layer. Error backpropagation learning method used widely in multilayer neural networks has a possibility of local minima due to the inadequate weights and the insufficient number of hidden nodes. So we propose a fuzzy supervised learning algorithm by using self-generation that self-generates hidden nodes by the compound fuzzy single layer perceptron and modified ART1. From the input layer to hidden layer, a modified ART1 is used to produce nodes. And winner take-all method is adopted to the connection weight adaptation, so that a stored pattern for some pattern gets updated. The proposed method has applied to the student identification card images. In simulation results, the proposed method reduces a possibility of local minima and improves learning speed and paralysis than the conventional error backpropagation learning algorithm.

  • PDF

Measurement Method of Height of White Light Scanning Interferometer using Deep Learning (Deep Learning을 사용한 백색광 주사 간섭계의 높이 측정 방법)

  • Baek, Sang Hyune;Hwang, Wonjun
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.864-875
    • /
    • 2018
  • In this paper, we propose a measurement method for height of white light scanning interferometer using deep learning. In order to measure the fine surface shape, a three-dimensional surface shape measurement technique is required. A typical example is a white light scanning interferometer. In order to calculate the surface shape from the measurement image of the white light scanning interferometer, the height of each pixel must be calculated. In this paper, we propose a neural network for height calculation and use virtual data generation method to train this neural network. The accuracy was measured by inputting 57 actual data to the neural network which had completed the learning. We propose two new functions for accuracy measurement. We have analyzed the cases where there are many errors among the accuracy calculation values, and it is confirmed that there are many errors when there is no interference fringe or outside the learned range. We confirmed that the proposed neural network works correctly in most cases. We expect better results if we improve the way we generate learning data.

Unsupervised Learning with Natural Low-light Image Enhancement (자연스러운 저조도 영상 개선을 위한 비지도 학습)

  • Lee, Hunsang;Sohn, Kwanghoon;Min, Dongbo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.135-145
    • /
    • 2020
  • Recently, deep-learning based methods for low-light image enhancement accomplish great success through supervised learning. However, they still suffer from the lack of sufficient training data due to difficulty of obtaining a large amount of low-/normal-light image pairs in real environments. In this paper, we propose an unsupervised learning approach for single low-light image enhancement using the bright channel prior (BCP), which gives the constraint that the brightest pixel in a small patch is likely to be close to 1. With this prior, pseudo ground-truth is first generated to establish an unsupervised loss function. The proposed enhancement network is then trained using the proposed unsupervised loss function. To the best of our knowledge, this is the first attempt that performs a low-light image enhancement through unsupervised learning. In addition, we introduce a self-attention map for preserving image details and naturalness in the enhanced result. We validate the proposed method on various public datasets, demonstrating that our method achieves competitive performance over state-of-the-arts.

Design and Implementation of Learning System for Generating Multimedia Contents at On-Line$\cdot$Mobile Environment (온라인$\cdot$모바일 환경에서 멀티미디어 컨텐츠 생성을 위한 학습 시스템의 설계 및 구현에 관한 연구)

  • Lee Hyun Chang;Choi Kwang Don
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.1 s.33
    • /
    • pp.217-222
    • /
    • 2005
  • The on-line and mobile communication technologies provide an environment to make users share information on the rove. However learning on a file received from on-line or mobile internet environment is able to read only, According to this, users cannot use various learning methods to make multimedia contents for learning like coloring and underlining considerable parts. Also, in case of storing, it cannot be stored in a standard file format HTML. Therefore, in this paper, we suggest a new learning platform to be able to change text contents in a web documents and implement a prototype system to process learning system in on-line environment

  • PDF

Accurate Human Localization for Automatic Labelling of Human from Fisheye Images

  • Than, Van Pha;Nguyen, Thanh Binh;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.5
    • /
    • pp.769-781
    • /
    • 2017
  • Deep learning networks like Convolutional Neural Networks (CNNs) show successful performances in many computer vision applications such as image classification, object detection, and so on. For implementation of deep learning networks in embedded system with limited processing power and memory, deep learning network may need to be simplified. However, simplified deep learning network cannot learn every possible scene. One realistic strategy for embedded deep learning network is to construct a simplified deep learning network model optimized for the scene images of the installation place. Then, automatic training will be necessitated for commercialization. In this paper, as an intermediate step toward automatic training under fisheye camera environments, we study more precise human localization in fisheye images, and propose an accurate human localization method, Automatic Ground-Truth Labelling Method (AGTLM). AGTLM first localizes candidate human object bounding boxes by utilizing GoogLeNet-LSTM approach, and after reassurance process by GoogLeNet-based CNN network, finally refines them more correctly and precisely(tightly) by applying saliency object detection technique. The performance improvement of the proposed human localization method, AGTLM with respect to accuracy and tightness is shown through several experiments.

Multi-class Classification of Histopathology Images using Fine-Tuning Techniques of Transfer Learning

  • Ikromjanov, Kobiljon;Bhattacharjee, Subrata;Hwang, Yeong-Byn;Kim, Hee-Cheol;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.7
    • /
    • pp.849-859
    • /
    • 2021
  • Prostate cancer (PCa) is a fatal disease that occurs in men. In general, PCa cells are found in the prostate gland. Early diagnosis is the key to prevent the spreading of cancers to other parts of the body. In this case, deep learning-based systems can detect and distinguish histological patterns in microscopy images. The histological grades used for the analysis were benign, grade 3, grade 4, and grade 5. In this study, we attempt to use transfer learning and fine-tuning methods as well as different model architectures to develop and compare the models. We implemented MobileNet, ResNet50, and DenseNet121 models and used three different strategies of freezing layers techniques of fine-tuning, to get various pre-trained weights to improve accuracy. Finally, transfer learning using MobileNet with the half-layer frozen showed the best results among the nine models, and 90% accuracy was obtained on the test data set.

The Analysis of Semi-supervised Learning Technique of Deep Learning-based Classification Model (딥러닝 기반 분류 모델의 준 지도 학습 기법 분석)

  • Park, Jae Hyeon;Cho, Sung In
    • Journal of Broadcast Engineering
    • /
    • v.26 no.1
    • /
    • pp.79-87
    • /
    • 2021
  • In this paper, we analysis the semi-supervised learning (SSL), which is adopted in order to train a deep learning-based classification model using the small number of labeled data. The conventional SSL techniques can be categorized into consistency regularization, entropy-based, and pseudo labeling. First, we describe the algorithm of each SSL technique. In the experimental results, we evaluate the classification accuracy of each SSL technique varying the number of labeled data. Finally, based on the experimental results, we describe the limitations of SSL technique, and suggest the research direction to improve the classification performance of SSL.