• 제목/요약/키워드: multimedia computing

검색결과 665건 처리시간 0.023초

가변 시간 골드스미트 부동소수점 제곱근 계산기 (A Variable Latency Goldschmidt's Floating Point Number Square Root Computation)

  • 김성기;송홍복;조경연
    • 한국정보통신학회논문지
    • /
    • 제9권1호
    • /
    • pp.188-198
    • /
    • 2005
  • 부동소수점 제곱근 계산에 많이 사용하는 골드스미트 제곱근 알고리즘은 곱셈을 반복하여 제곱근을 계산한다. 본 논문에서는 골드스미트 제곱근 알고리즘의 반복 과정의 오차를 예측하여 오차가 정해진 값보다 작아지는 시점까지 반복 연산하는 알고리즘을 제안한다. 'F'의 제곱근 계산은 초기값 $X_0=Y_0=T^2{\times}F,\;T=\frac{1}{\sqrt {F}}+e_t$에 대하여, $R_i=\frac{3-e_r-X_i}{2},\;X_{i+1}=X_i{\times}R^2_i,\;Y_{i+1}=Y_i{\times}R_i,\;i{\in}\{{0,1,2,{\ldots},n-1} }}'$을 반복한다 곱셈 결과는 소수점 이하 p 비트 미만을 절삭하며, 절삭 오차는 $e_r=2^{-p}$보다 작다. p는 단정도실수에서 28, 배정도실수에서 58이다. $X_i=1{\pm}e_i$ 이면 $X_{i+1}$ = $1-e_{i+1}$ $e_{i+1} {\frac{3e^2_i}{4}{\mp}\frac{e^3_i}} $ +4$e_{r}$이다. $|X_i-1|$ < $2^{\frac{-p+2}{2}}$이면, $e_{i+1}$ < $8e_{r}$ 이 부동소수점으로 표현할 수 있는 최소값보다 작게 되며, $\sqrt{F}$ {\fallingdotseq}\frac{Y_{i+1}}{T}}$이다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 도출하고, 여러 크기의 근사 역수 제곱근 테이블 ($T=\frac{1}{\sqrt{F}}+e_i$)에서 단정도실수 및 배정도실수의 제곱근 계산에 필요한 평균 곱셈 횟수를 계산한다. 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복하므로 제곱근 계산기의 성능을 높일 수 있다. 또한 최적의 근사 역수 제곱근 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그래픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.

가변 시간 골드스미트 부동소수점 나눗셈기 (A Variable Latency Goldschmidt's Floating Point Number Divider)

  • 김성기;송홍복;조경연
    • 한국정보통신학회논문지
    • /
    • 제9권2호
    • /
    • pp.380-389
    • /
    • 2005
  • 부동소수점 나눗셈에서 많이 사용하는 골드스미트 나눗셈 알고리즘은 일정한 횟수의 곱셈을 반복한다. 본 논문에서는 오차가 정해진 값보다 작아질 때까지 곱셈을 반복하여 나눗셈을 수행하는 가변 시간 골드스미트 부동소수점 나눗셈 알고리즘을 제안한다. 부동소수점 나눗셈 ‘$\frac{N}{F}$'는 'T=$\frac{1}{F}+e_t$'를 분모와 분자에 곱하면 ’$\frac{TN}{TF}=\frac{N_0}{F_0}$'가 된다. ’$R_i=(2-e_r-F_i),\;N_{i+1}=N_i{\ast}R_i,\;F_{i+1}=F_i{\ast}R_i$, i$\in${0,1,...n-1}'를 반복한다. 중간 곱셈 결과는 소수점이하 p 비트 미만을 절삭하며, 절삭 오차는 ‘$e_r=2^{-p}$', 보다 작다. p는 단정도실수에서 29, 배정도실수에서 59이다. ’$F_i=1+e_i$'이라고 하면 ‘$F_{i+1}=1-e_{i+1},\;e_{i+1},\;e_{i+1}'이 된다. '$[F_i-1]<2^{\frac{-p+3}{2}}$'이면, ’$e_{i+1}<16e_r$'이 부동소수점으로 표현 가능한 최소값보다 작아지며, ‘$N_{i+1}\risingdotseq\frac{N}{F}$이다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 도출하고, 여러 크기의 근사 역수 테이블($T=\frac{1}{F}+e_t$)에서 단정도실수 및 배정도실수의 나눗셈 계산에 필요한 평균 곱셈 횟수를 계산한다. 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복 연산을 수행하므로 나눗셈기의 성능을 높일 수 있다. 또한 최적의 근사 역수 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스,, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.

가변 시간 뉴톤-랍손 부동소수점 역수 제곱근 계산기 (A Variable Latency Newton-Raphson's Floating Point Number Reciprocal Square Root Computation)

  • 김성기;조경연
    • 정보처리학회논문지A
    • /
    • 제12A권5호
    • /
    • pp.413-420
    • /
    • 2005
  • 부동소수점 제곱근 계산에 많이 사용하는 뉴톤-랍손 부동소수점 역수 제곱근 알고리즘은 일정한 횟수의 곱셈을 반복하여 역수 제곱근을 계산한다. 본 논문에서는 뉴톤-랍손 역수 제곱근 알고리즘의 반복 과정의 오차를 예측하여 오차가 정해진 값보다 작아지는 시점까지 반복 연산하는 알고리즘을 제안한다. `F`의 역수 제곱근 계산은 초기값 '$X_0={\frac{1}{\sqrt{F}}}{\pm}e_0$'에 대하여, '$X_{i+1}=\frac{{X_i}(3-e_r-{FX_i}^2)}{2}$, $i\in{0,1,2,{\ldots}n-1}$'을 반복한다. 중간 곱셈 결과는 소수점 이하 p 비트 미만을 절삭하며, 절삭 오차는 '$e_r=2^{-p}$' 보다 작다. p는 단정도실수에서 28, 배정도실수에서 58이다. '$X_i={\frac{1}{\sqrt{F}}}{\pm}e_i$'라고 하면 '$X_{i+1}={\frac{1}{\sqrt{F}}}-e_{i+1}$, $e_{i+1}{<}{\frac{3{\sqrt{F}}{{e_i}^2}}{2}}{\mp}{\frac{{Fe_i}^3}{2}}+2e_r$이 된다. '$|{\frac{\sqrt{3-e_r-{FX_i}^2}}{2}}-1|<2^{\frac{\sqrt{-p}{2}}}$'이면,'$e_{i+1}<8e_r$이 부동소수점으로 표현 가능한 최소값보다 작아지며, '$X_{i+1}\fallingdotseq{\frac{1}{\sqrt{F}}}$'이다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 도출하고, 여러 크기의 근사 역수 제곱근 테이블($X_0={\frac{1}{\sqrt{F}}}{\pm}e_0$)에서 단정도실수 및 배정도실수의 역수 제곱근 계산에 필요한 평균 곱셈 횟수를 계산한다 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복하므로 역수 제곱근 계산기의 성능을 높일 수 있다. 또한 최적의 근사 역수 제곱근 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.

통합된 비디오 인덱싱 방법을 이용한 내용기반 비디오 데이타베이스의 설계 및 구현 (Design and Implementation of Content-based Video Database using an Integrated Video Indexing Method)

  • 이태동;김민구
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제7권6호
    • /
    • pp.661-683
    • /
    • 2001
  • 오늘날 멀티미디어 정보의 양이 매우 빠른 속도로 증가함에 따라 비디오 데이타베이스에 대한 효율적인 관리는 더욱 중요한 의미를 가지게 되었다. 그리고 초고속 정보통신망과 디지털 기술의 발전은 비디오 데이타를 통신 및 컴퓨터와 결합하여 새로운 멀티미디어로 발전하고 있으며, 인터넷 방송, 주문형 비디오(VOD) 등에 크게 활용하고 있다. 비디오는 대용량적인 특성과 비정형적인 특성을 가지고 있으므로 신속하고 효율적으로 비디오를 검색하기 위해 비디오의 정확한 특징정보를 추출하여 비디어 데이타베이스를 구축하여야 한다. 비디오 데이타베이스는 텍스트 기반의 전통 데이타베이스와는 다른 모델링 방법과 검색방법을 사용한다. 따라서, 비디오 데이타베이스에서의 검색속도와 정확도를 향상시키기 위해서는 새로운 비디오 데이타베이스 생성기법과 효율적인 검색기법이 필요하다. 본 논문에서는 비디오의 의미적 구조와 사전 제작지식정보를 구조적으로 축적할 수 있는 내용기반 비디오 데이타베이스의 구축 방안과 생성기법을 제시하였다. 그리고 제안된 비디오 데이타베이스의 구축 방안과 생성기법을 사용하여 새로운 인터넷 방송 프로그램 컨텐츠 제작에 활용할 수 있는 비디오 데이타베이스를 구현하였다. 이를 위해 비디오 분할과 대표키 프레임 추출 시 비디오의 의미적 구조와 사전 제작지식정보의 상호관계를 기반으로 하여 비디오 데이타의 특징정보를 추출하고, 검색할 수 있도록 주석기반 검색과 내용기반 검색을 통합한 비디오 인덱싱 방법을 제시하였다. 통합된 비디오 인덱싱 방법은 비디오의 하위 레벨에 표현된 내용기반 메타데이타 유형과 비디오의 특징정보 추출이 어려운 상위 레벨에 표현된 주석기반 메타데이타 유형을 동시에 이용하므로 컨텐츠 검색의 성능을 향상시킬 수 있다. 마지막으로 본 논문에서 제시한 비디오 데이타베이스는 비디오의 의미적 구조와 사전 제작지식정보를 구조적으로 축적하여 데이타베이스를 구축하므로 정확한 인터넷 방송 컨텐츠 정보의 축적관리와 구축작업의 효율화가 가능하며, 또한 인터넷 방송 컨텐츠 제작 시 정보공유 및 재이용이 가능하므로 새로운 컨텐츠 제작의 효율성을 높일 수 있다.

  • PDF

가변 시간 뉴톤-랍손 부동소수점 역수 계산기 (A Variable Latency Newton-Raphson's Floating Point Number Reciprocal Computation)

  • 김성기;조경연
    • 정보처리학회논문지A
    • /
    • 제12A권2호
    • /
    • pp.95-102
    • /
    • 2005
  • 부동소수점 나눗셈에서 많이 사용하는 뉴톤-랍손 부동소수점 역수 알고리즘은 일정한 횟수의 곱셈을 반복하여 역수를 계산한다. 본 논문에서는 오차가 정해진 값보다 작아질 때까지 곱셈을 반복해서 역수를 계산하는 가변 시간 뉴톤-랍손 부동소수점 역수 알고리즘을 제안한다. 'F'의 역수 계산은 초기값 $'X_0=\frac{1}{F}{\pm}e_0'$에 대하여, $'X_{i+1}=X=X_i*(2-e_r-F*X_i),\;i\in\{0,\;1,\;2,...n-1\}'$을 반복한다. 중간 곱셈 견과는 소수점 이하 p비트 미만을 절삭하며, 절삭 오차는 $'e_r=2^{-p}'$보다 작다. p는 단정도실수에서 27, 배정도실수에서 57이다. $'X_i=\frac{1}{F}+e_i{'}$라 하면 $'X_{i+1}=\frac{1}{F}-e_{i+1},\;e_{i+1}이 된다. $'\mid(2-e_r-F*X_i)-1\mid<2^{\frac{-p+2}{2}}{'}이면, $'e_{i+1}<4e_r{'}$이 부동산소수점으로 표현 가능한 최소값보다 작이지며, $'X_{i+1}\fallingdotseq\frac{1}{F}'$이다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 유도하고, 여러 크기의 근사 역수 테이블$(X_0=\frac{1}{F}{\pm}e_0)$에서 단정도실수 및 배정도실수의 역수 계산에 필요한 평균 곱셈 횟수를 계산한다. 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복 연산을 수행하므로 역수 계산기의 성능을 높일 수 있다. 또한 최적의 근사 역수 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.