• 제목/요약/키워드: multilevel inverter topologies

검색결과 30건 처리시간 0.021초

Hybrid Cascaded MLI topology using Ternary Voltage Progression Technique with Multicarrier Strategy

  • Venugopal, Jamuna;Subarnan, Gayathri Monicka
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1610-1620
    • /
    • 2015
  • A major problem in conventional multilevel inverter is that an increase in power semiconductor switches causes an increase in cost and switching losses of the inverter. The multicarrier strategy adopted for the multilevel inverters has become more popular due to reduced cost, lower harmonic distortion, and higher voltage capability than the conventional switching strategy applied to inverters. Various topologies and modulation strategies have been reported for utility and drive applications. Level shifted based pulse width modulation techniques are proposed to investigate the performance of the multilevel inverter. The proposed work focuses on reducing the utilized switches so that the cost and the switching losses of the inverter do not go up and the consistent efficiency could be achieved. This paper presents the detailed analysis of these topologies. The analysis is based on the number of switches, DC sources, output level, maximum voltage, and the efficiency. As an illustration, single phase cascaded multilevel inverter topologies are simulated using MATLAB/SIMULINK and the experimental results demonstrate the viability of these inverters.

Development of a Switched Diode Asymmetric Multilevel Inverter Topology

  • Karthikeyan, D.;Krishnasamy, Vijayakumar;Sathik, Mohd. Ali Jagabar
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.418-431
    • /
    • 2018
  • This paper presents a new asymmetrical multilevel inverter with a reduced number of power electronic components. The proposed multilevel inverter is analyzed using two different configurations: i) First Configuration (with a switched diode) and ii) Second Configuration (without a switched diode). The presented topologies are compared with recent multilevel inverter topologies in terms of number of switches, gate driver circuits and blocking voltages. The proposed topologies can be cascaded to generate the maximum number of output voltage levels and they are suitable for high voltage applications. Various power quality issues are addressed for both of the configurations. The proposed 11-level inverter configuration is simulated using MATLAB and it is validated with a laboratory based experimental setup.

A Single-Phase Cell-Based Asymmetrical Cascaded Multilevel Inverter

  • Singh, Varsha;Pattnaik, Swapnajit;Gupta, Shubhrata;Santosh, Bokam
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.532-541
    • /
    • 2016
  • A single-phase asymmetrical cascaded multilevel inverter is introduced with the goal of increasing power quality with the reduction of power in insulated-gate bipolar transistor (IGBT) switches. In the present work, the proposed inverter topology is analyzed and generalized with respect to different proposed algorithms for choosing different voltage source values. To prove the advantages of the proposed inverter, a case study involving a 17-level inverter is conducted. The simulation and experimental results with reduced THD are also presented and compared with the MATLAB/SIMULINK simulation results. Finally, the proposed topology is compared with different multilevel inverter topologies available in the literature in terms of the number of IGBT switches required with respect to the number of levels generated in the output of inverter topologies.

Cascaded H-Bridge Five Level Inverter for Grid Connected PV System using PID Controller

  • Sivagamasundari, M.S.;Mary, P. Melba
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권4호
    • /
    • pp.451-462
    • /
    • 2016
  • Photovoltaic energy conversion becomes main focus of many researches due to its promising potential as source for future electricity and has many advantages than the other alternative energy sources like wind, solar, ocean, biomass, geothermal etc. In Photovoltaic power generation multilevel inverters play a vital role in power conversion. The three different topologies, diode-clamped (neutral-point clamped) inverter, capacitor-clamped (flying capacitor) inverter and cascaded h-bridge multilevel inverter are widely used in these multilevel inverters. Among the three topologies, cascaded h-bridge multilevel inverter is more suitable for photovoltaic applications since each pv array can act as a separate dc source for each h-bridge module. This paper presents a single phase Cascaded H-bridge five level inverter for grid-connected photovoltaic application using sinusoidal pulse width modulation technique. This inverter output voltage waveform reduces the harmonics in the generated current and the filtering effort at the input. The control strategy allows the independent control of each dc-link voltages and tracks the maximum power point of PV strings. This topology can inject to the grid sinusoidal input currents with unity power factor and achieves low harmonic distortion. A PID control algorithm is implemented in Arm Processor LPC2148. The validity of the proposed inverter is verified through simulation and is implemented in a single phase 100W prototype. The results of hardware are compared with simulation results. The proposed system offers improved performance over conventional three level inverter in terms of THD.

A Level Dependent Source Concoction Multilevel Inverter Topology with a Reduced Number of Power Switches

  • Edwin Jose, S.;Titus, S.
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1316-1323
    • /
    • 2016
  • Multilevel inverters (MLIs) have been preferred over conventional two-level inverters due to their inherent properties such as reduced harmonic distortion, lower electromagnetic interference, minimal common mode voltage, ability to synthesize medium/high voltage from low voltage sources, etc. On the other hand, they suffer from an increased number of switching devices, complex gate pulse generation, etc. This paper develops an ingenious symmetrical MLI topology, which consumes lesser component count. The proposed level dependent sources concoction multilevel inverter (LDSCMLI) is basically a multilevel dc link MLI (MLDCMLI), which first synthesizes a stepped dc link voltage using a sources concoction module and then realizes the ac waveform through a conventional H-bridge. Seven level and eleven level versions of the proposed topology are simulated in MATLAB r2010b and prototypes are constructed to validate the performance. The proposed topology requires lesser components compared to recent component reduced MLI topologies and the classical topologies. In addition, it requires fewer carrier signals and gate driver circuits.

Multilevel Inverters Power Topologies and Voltage Quality: A Literature Review

  • Rehaoulia, Abir;Rehaoulia, Habib;Fnaiech, Farhat
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.83-93
    • /
    • 2016
  • Due to their performances and inherent benefits, especially in medium-voltage and high-power applications, multilevel inverters have received an increasing attention in real world industrial applications. The present paper deals with a review of the main multilevel inverter topologies as well their most common derived and hybrid structures quoted in previous research works. It also encompasses an investigation on voltage harmonic elimination and THD estimation. For that reason, the paper summarizes the most relevant modulation techniques used so far to enhance the output voltage quality. Theoretical formulas evoked in the literature, for calculating the output voltage THD upper and lower bounds are reported and verified by adequate simulations.

Single-Phase Multilevel PWM Inverter Based on H-bridge and its Harmonics Analysis

  • Choi, Woo-Seok;Nam, Hae-Kon;Park, Sung-Jun
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1227-1234
    • /
    • 2015
  • The efficient electric power demand management in electric power supply industry is currently being changed by distributed generation. Meanwhile, small-scale distributed generation systems using renewable energy are being constructed worldwide. Several small-scale renewable distributed generation systems, which can supply electricity to the grid at peak load of the grid as per policy such as demand response programs, could help in the stability of the electric power demand management. In this case, the power quality of the small-scale renewable distributed generation system is more significant. Low prices of power semiconductors and multilevel inverters with high power quality have been recently investigated. However, the conventional multilevel inverter topology is unsuitable for the small-scale renewable distributed generation system, because the number of devices of such topology increases with increasing output voltage level. In this paper, a single-phase multilevel inverter based on H-bridge, with DC_Link divided by bi-directional switches, is proposed. The proposed topology has almost half the number of devices of the conventional multilevel inverter topology when these inverters have the same output voltage level. Double Fourier series solution is mainly used when comparing PWM output harmonic components of various inverter topologies. Harmonic components of the proposed multilevel inverter, which have been analyzed by double Fourier series, are compared with those of the conventional multilevel inverter. An inverter prototype is then developed to verify the validity of the theoretical analysis.

An Improved Carrier-based SVPWM Method By the Redistribution of Carrier-wave Using Leg Voltage Redundancies in Generalized Cascaded Multilevel Inverter

  • Kang, Dae-Wook;Lee, Yo-Han;Suh, Bum-Seok;Park, Chang-Ho;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • 제1권1호
    • /
    • pp.36-47
    • /
    • 2001
  • The carrier-based space vector pulse width modulation(SVPWM), which is considered as highly simple and efficient PWM technology, can be also used in multilevel inverters. The method was originally designed for the two-level inverter and developed to the diode clamped multilevel inverter structure. however it may be noted that it also cause bad switch utilization in cascaded multilevel inverter. This paper introduces an improved carrier-based SVPWM scheme, which is fully suitable for cascaded multilevel inverter topologies because it can achieve the optimized switch utilization through the redistribution of the triangular carrier waves considering leg voltage redundancies while having the advantages of the conventional carrier-based SVPWM. Using simulation and experimental results, the superior performance of new PWM method is shown.

  • PDF

A Fault Diagnosis Method in Cascaded H-bridge Multilevel Inverter Using Output Current Analysis

  • Lee, June-Hee;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2278-2288
    • /
    • 2017
  • Multilevel converter topologies are widely used in many applications. The cascaded H-bridge multilevel inverter (CHBMI), which is one of many multilevel converter topologies, has been introduced as a useful topology in high and medium power. However, it has a drawback to require a lot of switches. Therefore, the reliability of CHBMI is important factor for analyzing the performance. This paper presents a simple switch fault diagnosis method for single-phase CHBMI. There are two types of switch faults: open-fault and short-fault. In the open-fault, the body diode of faulty switch provides a freewheeling current path. However, when the short-fault occurs, the distortion of output current is different from that of the open-fault because it has an unavailable freewheeling current flow path due to a disconnection of fuse. The fault diagnosis method is based on the zero current time analysis according to zero-voltage switching states. Using the proposed method, it is possible to detect the location of faulty switch accurately. The PSIM simulation and experimental results show the effectiveness of proposed switch fault diagnosis method.

A New Single Phase Multilevel Inverter Topology with Two-step Voltage Boosting Capability

  • Roy, Tapas;Sadhu, Pradip Kumar;Dasgupta, Abhijit
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1173-1185
    • /
    • 2017
  • In this paper, a new single phase multilevel inverter topology with a single DC source is presented. The proposed topology is developed based on the concepts of the L-Z source inverter and the switched capacitor multilevel inverter. The input voltage to the proposed inverter is boosted by two steps: the first step by an impedance network and the second step by switched capacitor units. Compared to other existing topologies, the presented topology can produce a higher boosted multilevel output voltage while using a smaller number of components. In addition, it provides more flexibility to control boosting factor, size, cost and complexity of the inverter. The proposed inverter possesses all the advantages of the L-Z source inverter and the switched capacitor multilevel inverter like controlling the start-up inrush current and capacitor voltage balancing using a simple switching strategy. The operating principle and general expression for the different parameters of the proposed topology are presented in detail. A phase disposition pulse width modulation strategy has been developed to switch the inverter. The effectiveness of the topology is verified by extensive simulation and experimental studies on a 7-level inverter structure.