• Title/Summary/Keyword: multilayers device

Search Result 28, Processing Time 0.022 seconds

Photoelectrochemical Behavior of Chlorophyll a Langmuir-Blodgett Films

  • Choe, Hyeon-Gu;Jeong, U-Cheol;Kim, Yeong-Gi;Lee, Won-Hong;Choe, Jeong-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.572-575
    • /
    • 2000
  • The highly efficient photoelectric conversion of chlorophyll a (Chl a) monolayers and multilayers was investigated. Using the Langmuir-Blodgett (LB) technique, Chl a monolayers and multilayers were fabricated onto optically transparent electrode, such as ITO glass. The photocurrent could be observed according to the light illumination. The action spectrum of the Chl a LB films was well consistent with its absorption spectrum. The possible application of the proposed system as a constituent of the artificial color recognition device was suggested.

  • PDF

Fabrication of good quality YBCO/STO/YBCO multilayers by using an ArF excimer laser deposition technique (ArF excimer laser 증착 기술을 이용한 우수한 특성의 YBCO/STO/YBCO 다층 박막 제작)

  • Jung, Tae-Bong;Kang, Joon-Hee
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.80-84
    • /
    • 2000
  • High temperature superconductor shows a good electric and magnetic properties and is known as a good candidate in various electronic device application. At present the technique to construct multilayers composed of HTS films and insulator films has not been fully studied in domestic research institutes. Since the construction of any reasonable eletronic devices require the use of multilayers, the development of HTS eletronic devices has been limited. To manufacture multiplayer, several processing steps which involve deposition and ion millings are required. To manufacture a good quality multilayerd structure, not only the deposition techniques but also the proper patterning have to be developed. In this work, we have fabricated a YBCO/STO/YBCO multiplayer and studied the electronic properties of it.

  • PDF

Investigation of Giant Magnetoresistance in Vacuum-Annealed NiFe/Ag Discontinuous Multilayers

  • Park, Chang-Min;Kim, Young-Eok;Shin, Kyung-Ho
    • Journal of Magnetics
    • /
    • v.2 no.2
    • /
    • pp.50-54
    • /
    • 1997
  • The vacuum-annealed Ni80Fe20/Ag discontinuous multilayers were found to show giant magnetoresistive behaviors comparable to those of corresponding multilayers annealed at atmospheric pressure in a mixture of H2 and Ar. This vacuum-annealing process will offer potential advantages, enabling a continuous batch process from the deposition to the annealing. Their giant magnetoresistive behaviors were attributed to the magnetostatic coupling that are induced at the edges of the discontinuous magnetic grains. We also present our results about the multilayer patterned into a basic device for the magnetic field sensor.

  • PDF

Chemical Fixation of Polyelectrolyte Multilayers on Polymer Substrates

  • Tuong, Son Duy;Lee, Hee-Kyung;Kim, Hong-Doo
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.373-378
    • /
    • 2008
  • A simple chemical fixation method for the fabrication of layer-by-layer (LbL) polyelectrolyte multilayer (PEM) has been developed to create a large area, highly uniform film for various applications. PEM of weak poly-electrolytes, i.e., polyallylamine hydrogen chloride (PAH) and poly(acrylic acid)(PAA), was assembled on polymer substrates such as poly(methyl methacrylate)(PMMA) and polycarbonate (PC). In the case of a weak polyelectrolyte, the fabricated thin film thickness of the polyelectrolyte multilayers was strongly dependent on the pH of the processing solution, which enabled the film thickness or optical properties to be controlled. On the other hand, the environmental stability for device application was poor. In this study, we utilized the chemical fixation method using glutaraldehyde (GA)-amine reaction in order to stabilize the polyelectrolyte multilayers. By simple treatment of GA on the PEM film, the inherent morphology was fixed and the adhesion and mechanical strength were improved. Both surface tension and FT-IR measurements supported the chemical cross-linking reaction. The surface property of the polyelectrolyte films was altered and converted from hydrophilic to hydrophobic by chemical modification. The possible application to antireflection coating on PMMA and PC was demonstrated.

Interfacial Properties in Cu-phthalocyanine-based Hybrid Inorganic/Organic Multilayers

  • Lee, Nyun Jong;Ito, Eisuke;Bae, Yu Jeong;Kim, Tae Hee
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.261-264
    • /
    • 2012
  • Interfacial properties of 5 nm MgO(001)/7 nm Fe(001)/1.8 nm MgO(001)/t nm Cu-phthalocyanine (CuPc) hybrid multilayers with t = 0, 1, 7, and 10 were investigated by using x-ray photoemission spectroscopy (XPS). Rather sharp interfacial properties were observed in the CuPc films grown on an epitaxial MgO/Fe/MgO(001) trilayer than a MgO/Fe(001) bilayer. This work suggests a new way to improve device performance of organic spintronic devices by utilizing an artificially grown MgO(001) thin layer.

Magnetic Characteristics of an InSb Hall Device of Multilayerd Structure (다충구조 InSb 홀소자의 제작과 특성)

  • 이우선;김상용;서용진;박진성;김창일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.8
    • /
    • pp.681-687
    • /
    • 2000
  • Magnetic Characteristics of an InSb hall device of multilayered structures were investigated. For the measurement of electrical properties of the hall device InSb thin films fabricated with series and parallel multilayers wee evaporated. Hall coefficient hall mobility carrier density and hall voltage were measured as a function of the intensity of magnetic field. We found that the XRD analysis of InSb thin film showed good properties at 20$0^{\circ}C$ 60 minutes. Resistance of ohmic contact was increased linearly due to increasing current. Hall voltages at 0.01 T showed 5$\times$10$^{-4}$ [V] and $1.5\times$10$^{-3}$ [V]. Some of device fabrication technique and analysis of magnetic characteristics were discussed.

  • PDF

Improvement of the Spin Transfer Induced Switching Effect by Copper and Ruthenium Buffer Layer

  • Nguyen T. Hoang Yen;Yi, Hyun-Jung;Joo, Sung-Jung;Jung, Myung-Hwa;Shin, Kyung-Ho
    • Journal of Magnetics
    • /
    • v.10 no.2
    • /
    • pp.48-51
    • /
    • 2005
  • The spin transfer induced magnetization switching has been reported to occur in magnetic multilayer structures whose scope usually consists of one stack of ferromagnetic / non-ferromagnetic / ferromagnetic (F / N / F) materials. In this work, it is shown that: 1) Copper used as a buffer layer between the free Co and the Au cap-layer can clearly increase the probability to get the spin transfer induced magnetization switching in a simple spin valve Co 11 / Cu 6/ Co 2 (nm); 2) Furthermore, when Ruthenium is simultaneously applied as a buffer layer on the Si-substrate, the critical switching currents can be reduced by $30\%$, and the absolute resistance change delta R $[{\Delta}R]$ of that stack can be enlarged by $35\%$. The enhancement of the spin transfer induced magnetization switching can be ascribed to a lower local stress in the thin Co layer caused by a better lattice match between Co and Cu and the smoothening effect of Ru on the thick Co layer.

Hall Effect Characteristics of InSb Thin Film (InSb 박막의 홀효과 특성)

  • Lee, Woo-Sun;Cho, Jun-Ho;Choi, Kun-Woo;Jeong, Yong-Ho;Kim, Sang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.6-9
    • /
    • 2000
  • InSb hall effect of multilayerd structures were investigated. According to variation of magnetic field measured hall coefficient, Hall mobility, carrier density and hall voltage. For the measurement of electrical properties of hall device, evaperated InSb thin film fabricated with series and parallel multilayers. We found that the XRD analysis of InSb thin film showed good properties at $200^{\circ}C$, 60 minutes. Resistance of ohmic contact increased linearly due to increasing current. Some of device fabrication technique and analysis of Hall effect were discussed.

  • PDF