• Title/Summary/Keyword: multilayer substrates

Search Result 98, Processing Time 0.023 seconds

Fabrication and Electrical Properties of PZT/BFO Multilayer Thin Films

  • Jo, Seo-Hyeon;Nam, Sung-Pil;Lee, Sung-Gap;Lee, Seung-Hwan;Lee, Young-Hie;Kim, Young-Gon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.193-196
    • /
    • 2011
  • Lead zirconate titanate (PZT)/ bismuth ferrite (BFO) multilayer thin films have been fabricated by the spin-coating method on Pt(200 nm)/Ti(10 nm)/$SiO_2$(100 nm)/p-Si(100) substrates using $BiFeO_3$ and $Pb(Zr_{0.52}Ti_{0.48})O_3$ metal alkoxide solutions. The PZT/BFO multilayer thin films show a uniform and void-free grain structure, and the grain size is smaller than that of PZT single films. The reason for this is assumed to be that the lower BFO layers play an important role as a nucleation site or seed layer for the formation of homogeneous and uniform upper PZT layers. The dielectric constant and dielectric losses decreased with increasing number of coatings, and the six-layer PZT/BFO thin film has good properties of 162 (dielectric constant) and 0.017 (dielectric losses) at 1 kHz. The remnant polarization and coercive field of three-layer PZT/BFO thin films were 13.86 ${\mu}C/cm^2$ and 37 kV/cm respectively.

Evaluation of Brinell Hardness of Coated Surface Using Finite Element Analysis: Part 3 - Application to Multilayer Coatings (유한요소해석에 의한 코팅면의 브리넬 경도 평가: 제3보 - 다층 코팅에 적용)

  • Park, TaeJo;Kang, JeongGuk
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.240-245
    • /
    • 2021
  • Ceramic coatings with high hardness and excellent chemical stability have been successfully applied to various machine elements, tools, and implants. However, in the case of monolayer coating on soft substrates, a high-stress concentration at the interface between the coating and the substrate causes delamination of the coating layer. Recently, to overcome this problem, multilayer coatings with a metal layer with a low modulus of elasticity added between the ceramic and the substrate have been widely applied. This study presents the third part of a recent study and focuses on the effect of the number of coating layers on the Brinell hardness of multilayered coating with TiN/Ti, following the two previous studies on a new Brinell hardness test method for a coated surface and on the influence of substrate and coating thickness. Indentation analyses are performed using finite element analysis software, von Mises stress and equivalent plastic strain distributions, load-displacement curves, and residual indentation shapes are presented. The number of TiN/Ti layers considerably affect the stress distributions and indentation shapes. Moreover, the greater the number of TiN/Ti layers, the higher is the Brinell hardness. The stress and plastic strain distributions confirm that the multilayer coatings improve the wear resistance. The results are expected to be used to design and evaluate various coating systems, and additional study is required.

Flexible Thin Film Encapsulation and Planarization Effectby Low Temperature Flowable Oxide Process

  • Yong, Sang Heon;Kim, Hoonbea;Chung, Ho Kyoon;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.431-431
    • /
    • 2013
  • Flexible Organic Light Emitting Diode (OLED) displays are required for future devices. It is possible that plastic substrates are instead of glass substrates. But the plastic substrates are permeable to moisture and oxygen. This weak point can cause the degradation of fabricated flexible devices; therefore, encapsulation process for flexible substrate is needed to protect organic devices from moisture and oxygen. Y.G. Lee et al.(2009) [1] reported organic and inorganic multilayer structure as an encapsulation barrier for enhanced reliability and life-time.Flowable Oxide process is a low-temperature process which shows the excellent gap-fill characteristics and high deposition rate. Besides, planarization is expected by covering dust smoothly on the substrate surface. So, in this research, Bi-layer structured is used for encapsulation: Flowable Oxide Thin film by PECVD process and Al2O3 thin film by ALD process. The samples were analyzed by water vapor transmission rate (WVTR) using the Calcium test and film cross section images were obtained by FE-SEM.

  • PDF

Characterization of a Crystallized ZnO/CuSn/ZnO Multilayer Film Deposited with Low Temperature Magnetron Sputtering

  • Kim, Dae-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.169-172
    • /
    • 2009
  • The ZnO/CuSn/ZnO (ZCSZ) multilayer films were deposited on polycarbonate substrates using reactive RF and DC magnetron sputtering. The thickness of each layer was 50 nm/5 nm/45 nm, respectively. The ZCSZ films showed a sheet resistance of $44{\Omega}$/Sq, which was an order of magnitude lower than that indium tin oxide (ITO) films. Although the ZCSZ films had a CuSn interlayer that absorbed visible light, both films had similar optical transmittances of 74% in the visible wavelength region. The figure of merit of the ZCSZ films was $1.0{\times}10^{-3}{\Omega}^{-1}$ and was greater than the value of the ITO films, $1.6{\times}10^{-4}{\Omega}^{-1}$. From the X-ray diffraction (XRD) analysis, the ITO films did not show any diffraction peaks, whereas the ZCSZ films showed diffraction peaks for the ZnO (100) and (002) phases. The hardness of the ITO and ZCSZ films were 5.8 and 7.1 GPa, respectively, which were determined using nano-indentation. From these results, the ZCSZ films exhibited greater optoelectrical performance and hardness compared to the conventional ITO films.

Adhesion Properties of Cu/cordierite for Multilayer IC Packaging (다층 IC펙키지용 구리/코디에라이트 접합 특성)

  • Han, Byeung-Sung;Yu, Sung-Tae;Lim, Nam-Hi;Jang, Me-Hea;Park, Sung-Jin
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.10
    • /
    • pp.96-100
    • /
    • 1990
  • The cordierite ($2MgO,2Al_{2}O_{3},5SiO_{2}$) is of great interest for packaging substrates of multilayer IC. The Cu layer was fabricated on the cordierite substrate by the screen printing method and the adhesion properties of the interfaces at the different cosintering conditions were studied. When cosinted in the $Ar+H_{2}O$atmosphere good adhesion was obtained and the heating was found out to be an important factor for the adhesion.

  • PDF

Epitaxial growth of Pt Thin Film on Basal-Plane Sapphire Using RF Magnetron Sputtering

  • 이종철;김신철;송종환;이충만
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.41-41
    • /
    • 1998
  • Rare earth metal films have been used as a buffer layer for growing ferroelectric t thin film or a seed layer for magnetic multilayer. But when it was deposited on s semiconductor substrates for the application of magneto-optic (MO) storage media, it i is difficult to exactly measure magnetic cons떠nts due to shunting current, and so it n needs to grow metal films on insulator substrate to reduce such effect. Recently, it w was reported that ultra-thin Pt layer were epitaxially grown on A12O:J by ion beam s sputtering in 비떠 high vacuum and it can be used as a seed layer for the growth of C Co-contained magnetic multilayer. In this stu$\phi$, Pt thin film were epi떠xially grown on AI2D3 ($\alpha$)OJ) by RF magnetron s sputtering. The crystalline structure was analyzed by transmission electron microscope ( (TEM) and Rutherford Back Scattering (RBS)/Ion Channeling. In TEM study, Pt was b believed to be twinned on AI잉3($\alpha$)01) su$\pi$ace about Pt(ll1) plane.Moreover, RBS c channeling spectra showed that minimum scattering yield of Pt(111)/AI2O:J(1$\alpha$)OJ) was 4 4% and Pt(11J)/AI2D3($\alpha$)OJ) had 3-fold symmetry.

  • PDF

Effect of Ni Interlayer on the Methanol Gas Sensitivity of ITO Thin Films

  • Lee, Y.J.;Huh, S.B.;Lee, H.M.;Shin, C.H.;Jeong, C.W.;Chae, J.H.;Kim, Y.S.;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.5
    • /
    • pp.245-248
    • /
    • 2010
  • Sn doped $In_2O_3$ (ITO) and ITO/Ni/ITO (INI) multilayer films were deposited on the glass substrates with a reactive magnetron sputtering system without intentional substrate heating and then the influence of the Ni interlayer on the methanol gas sensitivity of ITO and INI film sensors were investigated. Although both ITO and INI film sensors have the same thickness of 100 nm, INI sensors have a sandwich structure of ITO 50 nm/Ni 5 nm/ITO 45 nm. The changes in the gas sensitivity of the film sensors caused by methanol gas ranging from 100 to 1000 ppm were measured. It is observed that the INI film sensors show the higher sensitivity than that of the ITO single layer sensors. Finally, it can be concluded that the INI film sensor have the potential to be used as improved methanol gas sensors.

In situ Stress Measurements with Submonolayer Sensitivity As a Probe of Coherent-to-incoherent Matching at an Interface in Ultrathin Magnetic Films

  • Jeong, Jong-Ryul;Kim, Young-Seok;Shin, Sung-Chul
    • Journal of Magnetics
    • /
    • v.7 no.4
    • /
    • pp.151-155
    • /
    • 2002
  • In situ stress changes at interfaces of ultrathin magnetic films were measured by means of a non-contact optical fiber bundle displacement detector. A bending of the substrate due to stress of a deposited film was detected in cantilever geometry. The highest sensitivity of 134 mV/$\mu$m for the displacement detector was realized with a help of computer simulation. The detector was applied to in situ stress measurements of Co/Pt and Ni/Pd magnetic multilayer films prepared on the glass substrates by dc magnetron sputtering. The detector turned out to have a submonolayer sensitivity that enables to observe coherent-to-incoherent transition in these mismatched multilayers and even detect the stress changes within the monoatomic coverage. This highly sensitive detector paves new way to probe the stress relaxation at an interface in ultrathin films.

THE EFFECT OF SUBSTRATE TEMPERATURE ON GRAIN STRUCTURES AND MAGNETIC PROPERTIES OF Pd(Pt/Co/Pt) MODULATED MULTILAYERS

  • Xiao, Ying;Xu, Jun-Hao;Wittborn, Jesper;Yu, Seong-Cho;Rao, K.V.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.716-719
    • /
    • 1995
  • Pd/(Pt/Co/Pt) modulated multilayer films have been deposited on various substrates with Pd/Pt buffer layers. Films grown at different temperatures have very distinct magnetic properties and surface microstructures. Atomic force(AFM) and scanning tunneling (STM) microscopies studies of these films reveal that films deposited at room temperature have small grain structures with an average grain size of about $140\;{\AA}$. However, much larger grains of about $1200\;{\AA}$ in size are observed in the films grown on buffer layers which were deposited at $500^{\circ}C$. These large grains are found to actually consist of smaller grains of about $170{\AA}$ in diameter. SQUID magnetic and Kerr hysteresis loop measurements indicate that multilayer films with large grains exhibit high magnetic coercivities of around 5 kOe. A subgrain growth model is proposed to understand the observed grain structures in the multilayers.

  • PDF

Antistatic Behavior of UV-curable Multilayer Coating Containing Organic and Inorganic Conducting Materials (유·무기 전도성 물질을 함유한 UV 경화형 다층 코팅의 대전방지 특성)

  • Kim, Hwa-Suk;Kim, Hyun-Kyoung;Kim, Yang-Bae;Hong, Jin-Who
    • Journal of Adhesion and Interface
    • /
    • v.3 no.3
    • /
    • pp.22-29
    • /
    • 2002
  • UV curable coating system described here consists of double layers, namely under layer and top laser coatings. The former consists of organic-inorganic conductive materials and the latter consists of multifunctional acrylates. Transparent double layer coatings were prepared on the transparent substrates i.e. PMMA, PC, PET etc. by the wet and wet coating procedure. Their surface resistances and film properties were measured as a function of the top layer thickness and relative humidity. As the thickness of the top layer was less than $10{\mu}m$, the surface resistance in the range of $10^8{\sim}10^{10}{\Omega}/cm^2$ was obtained. The surface properties of the two-layer coating were remarkably improved compared with the single layer coating. The effects of migration of conducting materials on the film properties of multilayer coating were investigated by using contact angle and Fourier transform infrared/attenuated total reflection(FT-IR/ATR). It was found that the migration of dopant(dodecyl benzenesulfonic acid, DBSA) molecules were occurred from film-substrate interface to film-air interface in the organic conductive coating system but not in the inorganic one.

  • PDF