• 제목/요약/키워드: multilayer soil

검색결과 23건 처리시간 0.025초

A Fast Calculation of Apparent Soil Resistivity Using Exponential Sampling Method

  • Kang, Min-Jae;Kim, Ho-Chan
    • International Journal of Advanced Culture Technology
    • /
    • 제7권4호
    • /
    • pp.268-273
    • /
    • 2019
  • The apparent soil resistivity is used for estimating multilayer soil parameters, such as, layer's depth and soil resistivity. The soil parameters are estimated by continuously revising those parameters until the error between the measured and calculated apparent soil resistivity reaches to allowable level. The equation for calculating the apparent soil resistivity is complicated and time consumed, because it is composed of an infinite integral which includes a zero order Bessel's function of the first kind. In this paper, a fast algorithm for calculating the apparent soil resistivity of horizontal multilayer earth structure is proposed using exponential sampling method.

복소수이미지 방법을 이용한 겉보기 대지저항률 계산 (Apparent Soil Resistivity Calculation Using Complex Image Method)

  • 김호찬;부창진;강민제
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.318-321
    • /
    • 2019
  • 겉보기대지저항률은 층의 깊이와 대지저항률과 같은 다층 대지파라미터들을 추정하는 데 사용된다. 겉보기대지저항률은 측정 될 수 있으며, 또한 겉보기대지저항률은 이들 파라미터들의 함수이기 때문에 주어진 대지 파라미터들로 계산 될 수 있다. 따라서 모든 최적화 알고리즘을 사용하여 계산된 겉보기대지저항률을 측정된 대지저항률에 가깝게 만드는 이들 파라미터들을 찾을 수 있다. 겉보기대지저항률을 계산하기위한 방정식은 0 차 Bessel함수를 포함하는 무한 적분으로 구성되어 있기 때문에 복잡하고 시간 소모적이다. 본 논문에서는 수평 다층 구조의 겉보기대지저항률을 계산하기 위한 빠른 알고리즘이 복소수이미지 방법을 사용하여 제시되었다.

Field study of the process of densification of loose and liquefiable coastal soils using gravel impact compaction piers (GICPs)

  • Niroumand, Bahman;Niroumand, Hamed
    • Geomechanics and Engineering
    • /
    • 제30권5호
    • /
    • pp.479-487
    • /
    • 2022
  • This study evaluates the performance of gravel impact compaction piers system (GICPs) in strengthening retrofitting a very loose silty sand layer with a very high liquefaction risk with a thickness of 3.5 meters in a multilayer coastal soil located in Bushehr, Iran. The liquefiable sandy soil layer was located on clay layers with moderate to very stiff relative consistency. Implementation of gravel impact compaction piers is a new generation of aggregate piers. After technical and economic evaluation of the site plan, out of 3 experimental distances of 1.8, 2 and 2.2 meters between compaction piers, the distance of 2.2 meters was selected as a winning option and the northern ring of the site was implemented with 1250 gravel impact compaction piers. Based on the results of the standard penetration test in the matrix soil around the piers showed that the amount of (N1)60 in compacted soils was in the range of 20-27 and on average 14 times the amount of (1-3) in the initial soil. Also, the relative density of the initial soil was increased from 25% to 63% after soil improvement. Also the safety factor of the improved soil is 1.5-1.7 times the minimum required according to the two risk levels in the design.

Determination of Multilayer Earth Model Using Genetic Algorithm

  • Kang, Min-Jae;Boo, Chang-Jin;Kim, Ho-Chan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권3호
    • /
    • pp.171-175
    • /
    • 2007
  • In this paper a methodology has been proposed to compute the parameters of the multilayer earth model using a genetic algorithm(GA). The results provided by the GA constitute the indispensable data that can be used in circuital or field simulations of grounding systems. This methodology allows to proceed toward a very efficient simulation of the grounding system and an accurate calculation of potential on the ground's surface. The sets of soil resistivity used for GA are measured in Jeju area.

Using multivariate regression and multilayer perceptron networks to predict soil shear strength parameters

  • Ahmed Cemiloglu
    • Geomechanics and Engineering
    • /
    • 제39권2호
    • /
    • pp.129-142
    • /
    • 2024
  • The most significant soil parameters that are utilized in geotechnical engineering projects' design and implementations are soil strength parameters including friction (ϕ), cohesion (c), and uniaxial compressive strength (UCS). Understanding soil shear strength parameters can be guaranteed the design success and stability of structures. In this regard, professionals always looking for ways to get more accurate estimations. The presented study attempted to investigate soil shear strength parameters by using multivariate regression and multilayer perceptron predictive models which were implemented on 100 specimens' data collected from the Tabriz region (NW of Iran). The uniaxial (UCS), liquid limit (LL), plasticity index (PI), density (γ), percentage of fine-grains (pass #200), and sand (pass #4) which are used as input parameters of analysis and shear strength parameters predictions. A confusion matrix was used to validate the testing and training data which is controlled by the coefficient of determination (R2), mean absolute (MAE), mean squared (MSE), and root mean square (RMSE) errors. The results of this study indicated that MLP is able to predict the soil shear strength parameters with an accuracy of about 93.00% and precision of about 93.5%. In the meantime, the estimated error rate is MAE = 2.0231, MSE = 2.0131, and RMSE = 2.2030. Additionally, R2 is evaluated for predicted and measured values correlation for friction angle, cohesion, and UCS are 0.914, 0.975, and 0.964 in the training dataset which is considerable.

다층 퍼셉트론 신경망을 이용한 사면원호 파괴 예측 (Prediction of Slope Failure Arc Using Multilayer Perceptron)

  • 마지훈;윤태섭
    • 한국지반공학회논문집
    • /
    • 제38권8호
    • /
    • pp.39-52
    • /
    • 2022
  • 사면의 안전율과 임계활동면을 다층 퍼셉트론 신경망(multi-layer perceptron, MLP)을 이용하여 구할 수 있도록 훈련하였다. 사면의 형상은 한국의 설계기준을 참고한 단순 사면으로, 건조한 경우와 지하수위가 존재하는 경우를 모두 고려하였으며 사면을 구성하는 토질의 물성은 세립분을 포함한 사질토로 고려하였다. 훈련에 필요한 데이터를 만들 때 한계평형해석법을 이용하여 42,000가지 경우의 사면안정해석을 수행하였고, 지하수위가 고려된 도메인의 해석에서 불포화토의 모관흡수력으로 인한 유효응력 증가를 고려하였다. 지하수와 유효응력의 분포를 사면안정해석에 적용할 수 있도록 정상상태 침투 해석을 수행하였다. 사면을 표현하는 물성을 입력하면 안전율과 원호 파괴면을 예측할 수 있는 MLP 모델과 모델의 성능을 정량적으로 평가할 수 있는 방법을 제시하였다.

강화노반 및 궤도하부노반 재료의 회복탄성계수 (Resilient Moduli of Sub-ballast and Subgrade Materials)

  • 박철수;최찬용;최충락;목영진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1042-1049
    • /
    • 2007
  • Recently, a theoretically-sound design approach, using an elastic multilayer model, is attempted in trackbed designs for the construction of high speed railways and new lines of conventional railways. In the elastic multilayer model, the stress-dependent resilient modulus($E_R$) is an important input parameter, that is, reflects substructure performance under repeated traffic loading. However, the evaluation method for resilient modulus using repeated loading triaxial test is not fully developed for practical purpose, because of costly equipment and the significantly fluctuated values depending on the testing equipment and laboratory personnel. In this study, the paper will present an indirect method to estimate the resilient modulus using dynamic properties. The resilient modulus of crushed stone, which is the typical material of sub-ballast, was calculated with the measured dynamic properties and the range of stress level of the sub-ballast, and approximated with the power model combined with bulk and deviatoric stresses. The resilient modulus of coarse grained material decreases with increasing deviatoric stress at a confining pressure, and increases with increasing bulk stress. Sandy soil(SM classified from Unified Soil Classification System) of subgrade was also evaluated and best fitted with the power model of deviatoric stress only.

  • PDF

Wenner 4측정 데이터를 이용한 다층구조 대지의 파라미터 결정 (Estimation of Multilayer Earth Model Parameter from Wenner Four-probe Test Data)

  • 김호찬;부창진;김세호;오성보;고영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1781-1782
    • /
    • 2006
  • In this paper, a methodology has been proposed according to which, after carrying out a set of soil's resistivity measurements using Wenner Four-probe data, one can compute the parameters of the multilayer earth structure using a genetic algorithm(GA). The results provided by the GA constitute the indispensable data that can be used in circuital or field simulations of grounding systems. The methodology allows to proceed toward a very efficient simulation of the grounding system and an accurate calculation of potential on the ground's surface.

  • PDF

Shear behavior of geotextile-encased gravel columns in silty sand-Experimental and SVM modeling

  • Dinarvand, Reza;Ardakani, Alireza
    • Geomechanics and Engineering
    • /
    • 제28권5호
    • /
    • pp.505-520
    • /
    • 2022
  • In recent years, geotextile-encased gravel columns (usually called stone columns) have become a popular method to increasing soil shear strength, decreasing the settlement, acceleration of the rate of consolidation, reducing the liquefaction potential and increasing the bearing capacity of foundations. The behavior of improved loose base-soil with gravel columns under shear loading and the shear stress-horizontal displacement curves got from large scale direct shear test are of great importance in understanding the performance of this method. In the present study, by performing 36 large-scale direct shear tests on sandy base-soil with different fine-content of zero to 30% in both not improved and improved with gravel columns, the effect of the presence of gravel columns in the loose soils were investigated. The results were used to predict the shear stress-horizontal displacement curve of these samples using support vector machines (SVM). Variables such as the non-plastic fine content of base-soil (FC), the area replacement ratio of the gravel column (Arr), the geotextile encasement and the normal stress on the sample were effective factors in the shear stress-horizontal displacement curve of the samples. The training and testing data of the model showed higher power of SVM compared to multilayer perceptron (MLP) neural network in predicting shear stress-horizontal displacement curve. After ensuring the accuracy of the model evaluation, by introducing different samples to the model, the effect of different variables on the maximum shear stress of the samples was investigated. The results showed that by adding a gravel column and increasing the Arr, the friction angle (ϕ) and cohesion (c) of the samples increase. This increase is less in base-soil with more FC, and in a proportion of the same Arr, with increasing FC, internal friction angle and cohesion decreases.