Son Joon-Sik;Lee Duk-Man;Kim Ill-Soo;Choi Seung-Gap
Transactions of the Korean Society of Machine Tool Engineers
/
v.13
no.6
/
pp.29-33
/
2004
A major concern at present is the simultaneous control of transverse thickness profile and flatness in the finishing stages of hot rolling process. The mathematical modeling of hot rolling process has long been recognized to be a desirable approach to investigate rolling operating practice and the design of mill equipment to improve productivity and quality. However, many factors make the mathematical analysis of the rolling process very complex and time-consuming. In order to overcome these problems and to obtain an accurate rolling force, the predicted model of rolling force using neural networks has widely been employed. In this paper, Radial Basis Function Network(RBFN) is applied to improve the accuracy of rolling force prediction in hot rolling mill. In order to verify and analyze the performance of applied neural network the comparison with the measured rolling force and the predicted results using two different neural networks-RBFN, MLP, has respectively been carried out. The results obtained using RBFN neural network are much more accurate those obtained the MLP.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.12a
/
pp.162-165
/
2002
Q-learning은 강화학습의 한 방법으로서, 여러 분야에 널리 응용되고 있는 기법이다. 최근에는 Linear Quadratic Regulation(이하 LQR) 문제에 성공적으로 적용된 바 있는데, 특히, 시스템모델의 파라미터에 대한 구체적인 정보가 없는 상태에서 적절한 입력과 출력만을 가지고 학습을 통해 문제를 해결할 수 있어서 상황에 따라서 매우 실용적인 대안이 될 수 있다. Neural Q-learning은 이러한 Q-learning의 Q-value를 MLP(multilayer perceptron) 신경망의 출력으로 대치시킴으로써, 비선형 시스템의 최적제어 문제를 다룰 수 있게 한 방법이다. 그러나, Neural Q방식은 신경망의 구조를 먼저 결정한 후 역전파 알고리즘을 이용하여 학습하는 절차를 취하기 때문에, 시행착오를 통하여 신경망 구조를 결정해야 한다는 점, 역전파 알고리즘의 적용으로 인해 신경망의 연결강도 값들이 지역적 최적해로 수렴한다는 점등의 문제점을 상속받는 한계가 있다. 따라서, 본 논문에서는 Neural-0 학습의 도구로, 역전파 알고리즘으로 학습되는 MLP 신경망을 사용하는 대신 최근 들어 여러 분야에서 그 성능을 인정받고 있는 서포트 벡터 학습법을 사용하는 방법을 택하여, $\varepsilon$-SVR(Epsilon Support Vector Regression)을 이용한 Q-value 근사 기법을 제안하고 관련 수식을 유도하였다. 그리고, 모의 실험을 통하여, 제안된 서포트 벡터학습 기반 Neural-Q 방법의 적용 가능성을 알아보았다.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.54
no.7
/
pp.468-474
/
2005
Brain-machine interface (BMI) based on neuronal spike trains is regarded as one of the most promising means to restore basic body functions of severely paralyzed patients. The spike train decoding algorithm, which extracts underlying information of neuronal signals, is essential for the BMI. Previous studies report that a linear filter is effective for this purpose and there is no noteworthy gain from the use of nonlinear mapping algorithms, in spite of the fact that neuronal encoding process is obviously nonlinear. We designed several decoding algorithms based on the linear filter, and two nonlinear mapping algorithms using multilayer perceptron (MLP) and support vector machine regression (SVR), and show that the nonlinear algorithms are superior in general. The MLP often showed unsatisfactory performance especially when it is carelessly trained. The nonlinear SVR showed the highest performance. This may be due to the superiority of the SVR in training and generalization. The advantage of using nonlinear algorithms were more profound for the cases when there are false-positive/negative errors in spike trains.
This study explored the usefulness and implications of the Bayesian hyperparameter optimization in developing species distribution models (SDMs). A variety of machine learning (ML) algorithms, namely, support vector machine (SVM), random forest (RF), boosted regression tree (BRT), XGBoost (XGB), and Multilayer perceptron (MLP) were used for predicting the occurrence of four benthic macroinvertebrate species. The Bayesian optimization method successfully tuned model hyperparameters, with all ML models resulting an area under the curve (AUC) > 0.7. Also, hyperparameter search ranges that generally clustered around the optimal values suggest the efficiency of the Bayesian optimization in finding optimal sets of hyperparameters. Tree based ensemble algorithms (BRT, RF, and XGB) tended to show higher performances than SVM and MLP. Important hyperparameters and optimal values differed by species and ML model, indicating the necessity of hyperparameter tuning for improving individual model performances. The optimization results demonstrate that for all macroinvertebrate species SVM and RF required fewer numbers of trials until obtaining optimal hyperparameter sets, leading to reduced computational cost compared to other ML algorithms. The results of this study suggest that the Bayesian optimization is an efficient method for hyperparameter optimization of machine learning algorithms.
To effectively monitor the variety of distributions of neutron flux, fuel power or temperatures in the reactor core, usually the ex-core and in-core neutron detectors are employed. The thermocouples for temperature measurement are installed in the coolant inlet or outlet of the respective fuel assemblies. It is necessary to reconstruct the measurement information of the whole reactor position. However, the reading of different types of detector in the core reflects different aspects of the 3D power distribution. The feasibility of reconstruction the core three-dimension power distribution by using different combinations of in-core, ex-core and thermocouples detectors is analyzed in this paper to synthesize the useful information of various detectors. A comparison of multilayer perceptron (MLP) network and radial basis function (RBF) network is performed. RBF results are more extreme precision but also more sensitivity to detector failure and uncertainty, compare to MLP networks. This is because that localized neural network could offer conservative regression in RBF. Adding random disturbance in training dataset is helpful to reduce the influence of detector failure and uncertainty. Some convolution neural networks seem to be helpful to get more accurate results by use more spatial layout information, though relative researches are still under way.
Conventional concrete needs some improvement in the mechanical properties, which can be obtained by different admixtures. However, making concrete samples costume always time and money. In this paper, different types of hybrid algorithms are applied to develop predictive models for forecasting compressive strength (CS) of concretes containing metakaolin (MK) and fly ash (FA). In this regard, three different algorithms have been used, namely multilayer perceptron (MLP), radial basis function (RBF), and support vector machine (SVR), to predict CS of concretes by considering most influencers input variables. These algorithms integrated with the grey wolf optimization (GWO) algorithm to increase the model's accuracy in predicting (GWMLP, GWRBF, and GWSVR). The proposed MLP models were implemented and evaluated in three different layers, wherein each layer, GWO, fitted the best neuron number of the hidden layer. Correspondingly, the key parameters of the SVR model are identified using the GWO method. Also, the optimization algorithm determines the hidden neurons' number and the spread value to set the RBF structure. The results show that the developed models all provide accurate predictions of the CS of concrete incorporating MK and FA with R2 larger than 0.9972 and 0.9976 in the learning and testing stage, respectively. Regarding GWMLP models, the GWMLP1 model outperforms other GWMLP networks. All in all, GWSVR has the worst performance with the lowest indices, while the highest score belongs to GWRBF.
Eun Ji Lee;Young Joon Yoo;Chang Woo Byun;Jin Pyung Kim
Journal of the Semiconductor & Display Technology
/
v.22
no.1
/
pp.113-117
/
2023
As sputter equipment becomes more complex, it becomes increasingly difficult to understand the parameters that affect the thickness uniformity of thin metal film deposited by sputter. To address this issue, we verified a deep learning model that can predict complex relationships. Specifically, we trained the model to predict the height of 36 magnets based on the thickness of the material, using Support Vector Machine (SVM), Multilayer Perceptron (MLP), 1D-Convolutional Neural Network (1D-CNN), and 2D-Convolutional Neural Network (2D-CNN) algorithms. After evaluating each model, we found that the MLP model exhibited the best performance, especially when the dataset was constructed regardless of the thin film material. In conclusion, our study suggests that it is possible to predict the sputter equipment source using film thickness data through a deep learning model, which makes it easier to understand the relationship between film thickness and sputter equipment.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.144-146
/
2021
Idiopathic pulmonary fibrosis (IPF) is one of the most dreadful lung diseases which effects the performance of the lung unpredictably. There is no any authentic natural history discovered yet pertaining to this disease and it has been very difficult for the physicians to diagnosis this disease. With the advent of Artificial intelligent and its related technologies this task has become a little bit easier. The aim of this paper is to develop and to explore the machine learning models for the prediction and diagnosis of this mysterious disease. For our study, we got IPF dataset from Haeundae Paik hospital consisting of 2425 patients. This dataset consists of 502 features. We applied different data preprocessing techniques for data cleaning while making the data fit for the machine learning implementation. After the preprocessing of the data, 18 features were selected for the experiment. In our experiment, we used different machine learning classifiers i.e., Multilayer perceptron (MLP), Support vector machine (SVM), and Random forest (RF). we compared the performance of each classifier. The experimental results showed that MLP outperformed all other compared models with 91.24% accuracy.
Yaylaci, Murat;Yaylaci, Ecren Uzun;Ozdemir, Mehmet Emin;Ay, Sevil;Ozturk, Sevval
Steel and Composite Structures
/
v.45
no.4
/
pp.501-511
/
2022
In this study, a two-dimensional model of the contact problem has been examined using the finite element method (FEM) based software ANSYS and based on the multilayer perceptron (MLP), an artificial neural network (ANN). For this purpose, a functionally graded (FG) half-infinite layer (HIL) with a crack pressed by means of two rigid blocks has been solved using FEM. Mass forces and friction are neglected in the solution. Since the problem is analyzed for the plane state, the thickness along the z-axis direction is taken as a unit. To check the accuracy of the contact problem model the results are compared with a study in the literature. In addition, ANSYS and MLP results are compared using Root Mean Square Error (RMSE) and coefficient of determination (R2), and good agreement is found. Numerical solutions are made by considering different values of external load, the width of blocks, crack depth, and material properties. The stresses on the contact surfaces between the blocks and the FG HIL are examined for these values, and the results are presented. Consequently, it is concluded that the considered non-dimensional quantities have a noteworthy influence on the contact stress distributions, and also, FEM and ANN can be efficient alternative methods to time-consuming analytical solutions if used correctly.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.44
no.1
/
pp.40-48
/
2007
This paper presents a novel texture segmentation method using multilayer perceptron (MLP) networks and Markov random fields in multiscale Bayesian framework. Multiscale wavelet coefficients are used as input for the neural networks. The output of the neural network is modeled as a posterior probability. Texture classification at each scale is performed by the posterior probabilities from MLP networks and MAP (maximum a posterior) classification. Then, in order to obtain the more improved segmentation result at the finest scale, our proposed method fuses the multiscale MAP classifications sequentially from coarse to fine scales. This process is done by computing the MAP classification given the classification at one scale and a priori knowledge regarding contextual information which is extracted from the adjacent coarser scale classification. In this fusion process, the MRF (Markov random field) prior distribution and Gibbs sampler are used, where the MRF model serves as the smoothness constraint and the Gibbs sampler acts as the MAP classifier. The proposed segmentation method shows better performance than texture segmentation using the HMT (Hidden Markov trees) model and HMTseg.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.