• Title/Summary/Keyword: multifunctional materials

Search Result 185, Processing Time 0.039 seconds

Design and Synthesis of Multi Functional Noble Metal Based Ternary Nitride Thin Film Resistors

  • Kwack, Won-Sub;Choi, Hyun-Jin;Lee, Woo-Jae;Jang, Seung-Il;Kwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.93-93
    • /
    • 2013
  • In recent years, multifunctional ternary nitride thin films have received extenstive attention due to its versatility in many applications. In particular, noble metal based ternary nitride thin films showed a promising properties in the application of Multifunctional heating resistor films because its good electrical properties and excellent resistance against oxidation and corrosion. In this study, we prepared multifunctional noble metal based ternary nitride thin films by atomic layer deposition (ALD) and plasma-enhanced ALD (PEALD) method. ALD and PEALD techniques were used due to their inherent merits such as a precise composition control and large area uniformity, which is very attractive for preparing multicomponent thin films on large area substrate. Here, we will demonstrate the design concept of multifunctional noble metal based ternary thin films. And, the relationship between microstructural evolution and electrical resistivity in noble metal based ternary thin films will be systemically presented. The useful properties of noble metal based ternary thin films including anti-corrosion and anti-oxidation will be discussed in terms of hybrid functionality.

  • PDF

Tribological Performance of Laser Textured Translucent Duplex α/β-Sialon Composite Ceramics

  • Joshi, Bhupendra;Tripathi, Khagendra;Gyawali, Gobinda;Lee, Soo Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.180-181
    • /
    • 2014
  • Optically translucent Sialon ceramics was fabricated by hot pressed sintering method. The Sialon ceramics was laser textured and their tribological performance was observed. Starved lubrication method was applied on Sialon ceramics with different dimple spacing under a load of 10N and at room temperature. The material having high dimple spacing ($200{\mu}m$) shows low coefficient of friction. The material shows mild wear and therefore, wear rate of steel ball (meeting partner) was observed to measure wear rate. Different phases Sialon ceramics were analyzed by XRD patterns. Moreover, the mechanical properties of the Sialon ceramics were observed.

  • PDF

Formative Characteristics of Multifunctional Eco-friendly Fashion Design (친환경적 다기능 패션디자인의 조형적 특성)

  • Na, Eun-Mi;Kim, Sae-Bom;Lee, Kyoung-Hee
    • The Research Journal of the Costume Culture
    • /
    • v.19 no.1
    • /
    • pp.119-127
    • /
    • 2011
  • This purpose of this study was to analyze the formation and look into design characteristics by types and method of expression on multifunctional eco-friendly fashion design. Total 191 pieces of multifunctional fashion design photographs were collected through fashion collection from 2000 S/S to S/S 2010 F/W on the website. First, the characteristics of multifunctional eco-friendly fashion design used squared silhouette, achromatic colors, plain patterns for pollution control, hard materials to prolong the product, it was clear that details were minimized to save resources. Second, there were 5 changeable types of multifunctional eco-friendly fashion design which were changes in changing forms, material changes, item changes, detail changes and complex changes. Third, as the result of changeable types by method of expression, the changing forms were expressed by removable, material changes by reversible, detail changes by open and close and item changes by shifting. Forth, the formative properties of multifunctional eco-friendly fashion design had flexibility, multifunction, versatility and amusing. Therefore, this study will be helpful in planning multifunctional eco-friendly fashion design according to the kind of formative characteristics, changeable types, method of expression and provide concrete fundamental materials for the expert in clothing on the base of objective data through statistical analysis.

One-pot Synthesis of Multifunctional Mn3O4/mesoporous Silica Core/shell Nanoparticles for Biomedical Applications

  • Lee, Dong Jun;Lee, Nohyun;Lee, Ji Eun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.113-118
    • /
    • 2022
  • Multifunctional nanomaterials based on mesoporous silica nanoparticles (MSN) and metal oxide nanocrystals are among the most promising materials for theragnosis because of their ease of modification and high biocompatibility. However, the preparation of multifunctional nanoparticles requires time-consuming multistep processes. Herein, we report a simple one-pot synthesis of multifunctional Mn3O4/mesoporous silica core/shell nanoparticles (Mn3O4@mSiO2) involving the temporal separation of core formation and shell growth. This simple procedure greatly reduces the time and effort required to prepare multifunctional nanoparticles. Despite the simplicity of the process, the properties of nanoparticles are not markedly different from those of core/shell nanoparticles synthesized by a previously reported multistep process. The Mn3O4@mSiO2 nanoparticles are biocompatible and have potential for use in optical imaging and magnetic resonance imaging.

Temperature and Gas Sensing Multifunctional Ceramic Sensors (온도 가스 감지 다기능성 세라믹 복합 센서)

  • Moon, Hi-Gyu;Shim, Young-Seok;Kim, Do-Hong;Ryu, Jung-Ho;Kim, Jin-Sang;Park, Hyung-Ho;Park, Dong-Soo;Yoon, Seok-Jin;Jang, Ho-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.646-650
    • /
    • 2012
  • Multifunctional structures with two kinds of materials have been intensively investigated in order to improve their electrical characteristic with two functions simultaneously. However, the research regarding of multifunctional ceramic sensor is still in a preliminary stage and how to integrate them with low-cost and high-yield mass production process remains a challenge issue. In this study, we fabricated the multifunctional ceramic sensor composed of temperature and gas sensors. Moreover, we investigated the CO sensing properties of three dimensional nanostuctured $Nb_2O_5$ thin film gas sensors fabricated with silica ($SiO_2$ nanosphere (${\O}$= 750 nm). Compared to plain films, the nanostructured films show enhanced gas sensing of greater sensitivity and a faster response. This result reveals that significantly increased sensitivity is an increase in the effective surface area for the adsorption of gas molecules.

Synthesis of the Multifunctional Core/Intermediate/Shell Nanoparticles: Tunable Magnetic and Photoluminescence Properties (자성 및 발광 특성이 조절 가능한 다기능 코어/중간체/쉘 나노 입자 합성)

  • Kim, Mun-Kyoung;Kim, Seyun;Moon, Kyoung-Seok;Shin, Weon Ho;Jeong, Hyung Mo
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.463-470
    • /
    • 2019
  • Fe3O4/SiO2/YVO4:Eu3+ multifunctional nanoparticles are successfully synthesized by facile stepwise sol-gel processes. The multifunctional nanoparticles show a spherical shape with narrow size distribution (approximately 40 nm) and the phosphor shells are well crystallized. The Eu3+ shows strong photoluminescence (red emission at 619 nm, absorbance at 290 nm) due to an effective energy transfer from the vanadate group to Eu. Core-shell structured multifunctional nanoparticles have superparamagnetic properties at 300 K. Furthermore, the core-shell nanoparticles have a quick response time for the external magnetic field. These results suggest that the photoluminescence and magnetic properties could be easily tuned by either varying the number of coating processes or changing the phosphor elements. The nanoparticles may have potential applications for appropriate fields such as laser systems, optical amplifiers, security systems, and drug delivery materials.