• 제목/요약/키워드: multidrug-resistant pathogens

검색결과 41건 처리시간 0.031초

Anti-inflammatory and Anti-bacterial Effects of Aloe vera MAP against Multidrug-resistant Bacteria

  • Choi, Sang Hwa;Shin, Hea Soon
    • Natural Product Sciences
    • /
    • 제23권4호
    • /
    • pp.286-290
    • /
    • 2017
  • Multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa are highly dangerous nosocomial pathogens, cause the symptoms of skin infections, pressure sores, sepsis, blood stream and wound infections. Unfortunately, these pathogens are immune to the most common antibiotics, such as, carbapenem, aminoglycoside and fluoroquinolone. Therefore, it is imperative that new and effective antibiotics be developed. In the present study, the antimicrobial effects of Aloe vera MAP (modified Aloe polysaccharide) on Staphylococcus aureus and Bacillus subtilis, Escherichia coli and Enterobacter aerogenes, and clinical Pseudomonas aeruginosa and clinical Acinetobacter baumannii were comprehensibly investigated. Prior to the growth inhibition effect measurement and antibiotic disc diffusion assay on gram-positive and gram-negative bacteria and selected multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii, antimicrobial resistance screening was performed for the multidrug-resistant bacteria obtained from clinical isolates. The results for showed the Aloe vera MAP had a concentration-dependent effect on all of examined bacteria, particularly on Pseudomonas aeruginosa. Anti-inflammatory and anti-oxidant experiments were also performed dose dependently effects to confirm the beneficial physiological effects of Aloe vera MAP.

Gliotoxin is Antibacterial to Drug-resistant Piscine Pathogens

  • Feng, Haoran;Liu, Sen;Su, Mingzhi;Kim, Eun La;Hong, Jongki;Jung, Jee H.
    • Natural Product Sciences
    • /
    • 제24권4호
    • /
    • pp.225-228
    • /
    • 2018
  • By activity-guided fractionation, gliotoxin was isolated as an antibacterial metabolite of the fungus Penicillium decumbens which was derived from the jellyfish Nemopilema nomurai. Gliotoxin was further evaluated for antibacterial activity against several piscine and human MDR (multidrug resistance) pathogens. Gliotoxin showed significant antibacterial activity against Gram-positive piscine pathogens such as Streptococcus iniae FP5228, Streptococcus iniae FP3187, Streptococcus parauberis FP3287, Streptococcus parauberis SPOF3K, S. parauberis KSP28, and Lactococcus garvieae FP5245. Gliotoxin showed strong activity especially against S. parauberis SPOF3K and S. iniae FP5228, which are resistant to oxytetracycline. It is noteworthy that gliotoxin effectively suppressed streptococci which are the major pathogens for piscine infection and mortality in aquaculture industry. Gliotoxin also showed strong antibacterial activity against multidrug- resistant human pathogens (MDR) including Enterococcus faecium 5270 and MRSA (methicillin-resistant Staphylococcus aureus) 3089.

다제내성 아시네토박터 바우마니의 에센셜 오일에 대한 항균효과 (Antimicrobial Effects of Essential Oils for Multidrug-Resistant Acinetobacter baumanii)

  • 박창은;권필승
    • 대한임상검사과학회지
    • /
    • 제50권4호
    • /
    • pp.431-437
    • /
    • 2018
  • Acinetobacter baumannii는 광범위한 항생제에 대한 저항성으로 인해 감염된 환자의 사망률이 높아지는 적색 경보 병원체로 분류됩니다. 이 연구에서 다제 내성 A. baumannii(MRAB)의 18가지 임상 분리 균주에 대해 일부 에센셜 오일(티트리, 로즈마리, 라벤더 오일)의 항균 활성을 평가하고자 하였다. Carbapenemase 선별을 위한 Hodge 시험법은 A. baumannii의 20 가지 균주가 모두 imipenem에 내성이 있음을 보여주었습니다. 다제 내성 미생물의 확인은 VITEK 시스템을 통해 수행하였다. 에센셜 오일의 항균 활성은 MRAB에 대한 디스크 확산 방법으로 평가하였다. 디스크 확산 방법에서 tee tree는 라벤더 오일에 비해 억제 크기가 가장 크게 증가했으며, 로즈마리는 항균 효과가 없었다. 티 트리 오일은 가장 일반적인 인간 병원균 및 MRAB 감염의 치료 및 예방을 위한 대체 천연 제품으로 유용할 것으로 보인다. 따라서 이 연구의 결과는 다제 내성 A. baumannii의 항균 효과를 입증했으며, 미래에 천연 에센셜 오일을 사용하는 손 소독제와 같은 항균제로 사용될 것으로 예상됩니다.

Antimicrobial Potential of Moringa oleifera Seed Coat and Its Bioactive Phytoconstituents

  • Arora, Daljit Singh;Onsare, Jemimah Gesare
    • 한국미생물·생명공학회지
    • /
    • 제42권2호
    • /
    • pp.152-161
    • /
    • 2014
  • The in vitro antimicrobial potential of the unexplored Moringa oleifera seed coat (SC) was evaluated against some Gram-positive and Gram-negative bacteria and yeast pathogens. Antimicrobial studies with various solvent extracts indicated ethyl acetate to be the best extractant, which was used for the rest of the antimicrobial studies as it tested neither toxic nor mutagenic. Gram-positive bacteria including a methicillin resistant Staphylococcus aureus (MRSA) strain were more susceptible with a minimum inhibitory concentration (MIC) range of 0.03-0.04 mg/ml. The antimicrobial pharmacodynamics of the extract exhibited both concentration-dependent and time-dependent killing. Most of the test organisms exhibited a short post antibiotic effect (PAE) except Enterococcus faecalis, Staphylococcus aureus, and Klebsiella pneumoniae 1, which exhibited longer PAEs. Amongst the major phytoconstituents established, flavonoids, diterpenes, triterpenes and cardiac glycosides exhibited inhibitory properties against most of the test organisms. The identified active phytochemicals of the M. oleifera seed coat exhibited antimicrobial potential against a wide range of medically important pathogens including the multidrug-resistant bugs. Hence, the M. oleifera seed coat, which is usually regarded as an agri-residue, could be a source of potential candidates for the development of drugs or drug leads of broad spectrum that includes multidrug-resistant bugs, which are one of the greatest concerns of the $21^{st}$ century.

항생펩타이드의 기능과 적용분야 (The Function and Application of Antibiotic Peptides)

  • 이종국;;박윤경
    • 공업화학
    • /
    • 제22권2호
    • /
    • pp.119-124
    • /
    • 2011
  • 현재, 사람들은 많은 병에 노출되어 있다. 산업화의 빠른 변화는 생산시설의 자동화, 정보 통신 산업기술의 발달로 삶의 질이 향상되었으나, 신체활동의 감소와 환경오염으로 인해 환경적 스트레스와 병원균 감염 반응에 대한 인간의 면역체계가 악화되었다. 아울러 현재 약물의 오 남용으로 다재약물내성을 갖는 미생물들(multidrug-resistant microbes)과 암세포(tumor)의 출현으로 인해 새로운 항생제 개발이 시급하다. 그들 중 하나가 항생 펩타이드(antibiotic peptide)로 기존 약물과 비교하면 약물저항성이 거의 일어나지 않는다. 여러 가지 항생활성을 가지는 펩타이드들은 다양한 생명체로부터 동정되고 있다. 이 논문은 항생 펩타이드들의 활성과 적용분야에 대해 논하려 한다.

ESKAPE Pathogens in Oral and Maxillofacial Infections

  • Lee, Hye-Jung;Moon, Seong-Yong;Oh, Ji-Su;Choi, Hae-In;Park, Sang-Yeap;Kim, Tae-Eun;You, Jae-Seek
    • Journal of Oral Medicine and Pain
    • /
    • 제47권1호
    • /
    • pp.52-61
    • /
    • 2022
  • Purpose: Most cases of oral and maxillofacial infections are usually easily treated by proper diagnosis, elimination of causative factors, and antibiotic therapy. However, the emergence and the increase of multidrug-resistant bacteria make treatment challenging. "ESKAPE" pathogens are the most common opportunistic organisms in nosocomial infections and have resistant to commonly used antibiotics. There are many medical reviews of ESKAPE pathogens, but few in dentistry. This study focuses on oral and maxillofacial infection especially with ESKAPE pathogens. The purpose of this study is to prepare feasible data about tracing and treatment of infection related to pathogens that may be beneficial to clinicians. Methods: A total of 154 patients with oral and maxillofacial infections were reviewed by analyzing retrospectively hospitalized data in the Department of Oral and Maxillofacial surgery, Chosun University Hospital, Korea, past 5 years from January 2014 to December 2018. Based on the medical records and microbiological tests, the results were divided into two groups: infections with ESKAPE pathogens and other bacteria. Results: A total of 22 species were isolated from 154 patients. The proportion of ESKAPE pathogens among all bacterial isolates collected from infected patients was 39.6%. Causative factors, especially in post-operative infection, showed a statistically significant correlation to ESKAPE infections (29 cases). And average of treatment period in ESKAPE group was longer than non-ESKAPE groups. Overall, Klebsiella pneumoniae (60.7%) was the most frequently isolated ESKAPE pathogen. And high antibiotic resistance rates had been detected in the ESKAPE during the five-year period. Conclusions: Infections with ESKAPE pathogens are now a problem that can no longer be overlooked in Dentistry. Based on results of this study, ESKAPE pathogens were highly associated with post-operative or opportunistic infections. Clinicians should be careful about these antibiotic resistant pathogens and use appropriate antibiotics to patients while having dental treatments.

Intensive Care Unit Relocation and Its Effect on Multidrug-Resistant Respiratory Microorganisms

  • Kim, Hyung-Jun;Jeong, EuiSeok;Choe, Pyoeng Gyun;Lee, Sang-Min;Lee, Jinwoo
    • Acute and Critical Care
    • /
    • 제33권4호
    • /
    • pp.238-245
    • /
    • 2018
  • Background: Infection by multidrug-resistant (MDR) pathogens leads to poor patient outcomes in intensive care units (ICUs). Contact precautions are necessary to reduce the transmission of MDR pathogens. However, the importance of the surrounding environment is not well known. We studied the effects of ICU relocation on MDR respiratory pathogen detection rates and patient outcomes. Methods: Patients admitted to the ICU before and after the relocation were retrospectively analyzed. Baseline patient characteristics, types of respiratory pathogens detected, antibiotics used, and patient outcomes were measured. Results: A total of 463 adult patients admitted to the ICU, 4 months before and after the relocation, were included. Of them, 234 were admitted to the ICU before the relocation and 229 afterward. Baseline characteristics, including age, sex, and underlying comorbidities, did not differ between the two groups. After the relocation, the incidence rate of MDR respiratory pathogen detection decreased from 90.0 to 68.8 cases per 1,000 patient-days, but that difference was statistically insignificant. The use of colistin was significantly reduced from 53.5 days (95% confidence interval [CI], 20.3 to 86.7 days) to 18.7 days (95% CI, 5.6 to 31.7 days). Furthermore, the duration of hospital stay was significantly reduced from a median of 29 days (interquartile range [IQR], 14 to 50 days) to 21 days (IQR, 11 to 39 days). Conclusions: Incidence rates of MDR respiratory pathogen detection were not significantly different before and after ICU relocation. However, ICU relocation could be helpful in reducing the use of antibiotics against MDR pathogens and improving patient outcomes.

Antagonistic Potentiality of Actinomycete-Derived Extract with Anti-Biofilm, Antioxidant, and Cytotoxic Capabilities as a Natural Combating Strategy for Multidrug-Resistant ESKAPE Pathogens

  • Mohamed H. El-Sayed;Fahdah A. Alshammari;Mohammed H. Sharaf
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권1호
    • /
    • pp.61-74
    • /
    • 2023
  • The global increase in multidrug-resistant (MDR) bacteria has inspired researchers to develop new strategies to overcome this problem. In this study, 23 morphologically different, soil-isolated actinomycete cultures were screened for their antibacterial ability against MDR isolates of ESKAPE pathogens. Among them, isolate BOGE18 exhibited a broad antibacterial spectrum, so it was selected and identified based on cultural, morphological, physiological, and biochemical characteristics. Chemotaxonomic analysis was also performed together with nucleotide sequencing of the 16S rRNA gene, which showed this strain to have identity with Streptomyces lienomycini. The ethyl acetate extract of the cell-free filtrate (CFF) of strain BOGE18 was evaluated for its antibacterial spectrum, and the minimum inhibitory concentration (MIC) ranged from 62.5 to 250 ㎍/ml. The recorded results from the in vitro anti-biofilm microtiter assay and confocal laser scanning microscopy (CLSM) of sub-MIC concentrations revealed a significant reduction in biofilm formation in a concentration-dependent manner. The extract also displayed significant scavenging activity, reaching 91.61 ± 4.1% and 85.06 ± 3.14% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), respectively. A promising cytotoxic ability against breast (MCF-7) and hepatocellular (HePG2) cancer cell lines was obtained from the extract with IC50 values of 47.15 ± 13.10 and 122.69 ± 9.12 ㎍/ml, respectively. Moreover, based on gas chromatography-mass spectrometry (GC-MS) analysis, nine known compounds were detected in the BOGE18 extract, suggesting their contribution to the multitude of biological activities recorded in this study. Overall, Streptomyces lienomycini BOGE18-derived extract is a good candidate for use in a natural combating strategy to prevent bacterial infection, especially by MDR pathogens.

Change Pattern of Species and Antimicrobial Susceptibility of Microorganisms Isolated from Blood Culture during 5 Years: 2008-2012

  • Shin, Kyung-A;Shin, Kyeong Seob;Hong, Seung Bok
    • 대한의생명과학회지
    • /
    • 제19권3호
    • /
    • pp.245-253
    • /
    • 2013
  • To provide reference data or guideline for empirical treatment of bloodstream infection, we studied a change pattern in causative microorganisms and antimicrobial susceptibility in a general hospital at Gyeonggi province during five years. We retrospectively reviewed the frequency of causative microorganisms and antimicrobial susceptibility results of 5,782 microorganisms isolated from blood culture in a general hospital during the period from January 2008 to December 2012. The most common pathogens were Escherichia coli (14.7%), Staphylococcus aureus (7.5%), Streptococcus viridans group (4.9%), and Klebsiella pneumoniae (4.1%). The multiple microorganisms were isolated in 4.3% of bloodstream infection patients. The average contamination rate of blood culture during five years was 3.0%. Methicillin-resistant S. aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), and penicillin-resistant Streptococcus pneumoniae were isolated at 62%, 27% and 11%, respectively. Cefotaxime-resistant E. coli and K. pneumoniae was 20% and 18%, respectively. Imipenem-resistant Pseudomonas aeruginosa (IRPA) and Acinetobacter baumannii (IRAB) was 25% and 66%, respectively. E. coli and S. aureus were most common pathogens isolated from blood culture for five years. The increase of multidrug-resistant microorganisms, such as MRSA, VRE, ESBL, IRPA and IRAB, requires more strict control of antibiotics and causes the need of the more updated guideline for the treatment of blood stream infection.