• Title/Summary/Keyword: multidrug

Search Result 547, Processing Time 0.033 seconds

Chemosensitizing effect and mechanism of imperatorin on the anti-tumor activity of doxorubicin in tumor cells and transplantation tumor model

  • Liang, Xin-li;Ji, Miao-miao;Liao, Zheng-gen;Zhao, Guo-wei;Tang, Xi-lan;Dong, Wei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.3
    • /
    • pp.145-155
    • /
    • 2022
  • Multidrug resistance of tumors has been a severe obstacle to the success of cancer chemotherapy. The study wants to investigate the reversal effects of imperatorin (IMP) on doxorubicin (DOX) resistance in K562/DOX leukemia cells, A2780/Taxol cells and in NOD/SCID mice, to explore the possible molecular mechanisms. K562/DOX and A2780/Taxol cells were treated with various concentrations of DOX and Taol with or without different concentrations of IMP, respectively. K562/DOX xenograft model was used to assess anti-tumor effect of IMP combined with DOX. MTT assay, Rhodamine 123 efflux assay, RT-PCR, and Western blot analysis were determined in vivo and in vitro. Results showed that IMP significantly enhanced the cytotoxicity of DOX and Taxol toward corresponding resistance cells. In vivo results illustrated both the tumor volume and tumor weight were significantly decreased after 2-week treatment with IMP combined with DOX compared to the DOX alone group. Western blotting and RT-PCR analyses indicated that IMP downregulated the expression of P-gp in K562/DOX xenograft tumors in NOD/SCID mice. We also evaluated glycolysis and glutamine metabolism in K562/DOX cells by measuring glucose consumption and lactate production. The results revealed that IMP could significantly reduce the glucose consumption and lactate production of K562/DOX cells. Furthermore, IMP could also remarkably repress the glutamine consumption, α-KG and ATP production of K562/DOX cells. Thus, IMP may sensitize K562/DOX cells to DOX and enhance the antitumor effect of DOX in K562/DOX xenograft tumors in NOD/SCID mice. IMP may be an adjuvant therapy to mitigate the multidrug resistance in leukemia chemotherapy.

Impact of Anti-Tuberculosis Drug Use on Treatment Outcomes in Patients with Pulmonary Fluoroquinolone-Resistant Multidrug-Resistant Tuberculosis: A Nationwide Retrospective Cohort Study with Propensity Score Matching

  • Hongjo Choi;Dawoon Jeong;Young Ae Kang;Doosoo Jeon;Hee-Yeon Kang;Hee Jin Kim;Hee-Sun Kim;Jeongha Mok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.86 no.3
    • /
    • pp.234-244
    • /
    • 2023
  • Background: Effective treatment of fluoroquinolone-resistant multidrug-resistant tuberculosis (FQr-MDR-TB) is difficult because of the limited number of available core anti-TB drugs and high rates of resistance to anti-TB drugs other than FQs. However, few studies have examined anti-TB drugs that are effective in treating patients with FQr-MDR-TB in a real-world setting. Methods: The impact of anti-TB drug use on treatment outcomes in patients with pulmonary FQr-MDR-TB was retrospectively evaluated using a nationwide integrated TB database (Korean Tuberculosis and Post-Tuberculosis). Data from 2011 to 2017 were included. Results: The study population consisted of 1,082 patients with FQr-MDR-TB. The overall treatment outcomes were as follows: treatment success (69.7%), death (13.7%), lost to follow-up or not evaluated (12.8%), and treatment failure (3.9%). On a propensity-score-matched multivariate logistic regression analysis, the use of bedaquiline (BDQ), linezolid (LZD), levofloxacin (LFX), cycloserine (CS), ethambutol (EMB), pyrazinamide, kanamycin (KM), prothionamide (PTO), and para-aminosalicylic acid against susceptible strains increased the treatment success rate (vs. unfavorable outcomes). The use of LFX, CS, EMB, and PTO against susceptible strains decreased the mortality (vs. treatment success). Conclusion: A therapeutic regimen guided by drug-susceptibility testing can improve the treatment of patients with pulmonary FQr-MDR-TB. In addition to core anti-TB drugs, such as BDQ and LZD, treatment of susceptible strains with later-generation FQs and KM may be beneficial for FQr-MDR-TB patients with limited treatment options.

Restoring Ampicillin Sensitivity in Multidrug-Resistant Escherichia coli Following Treatment in Combination with Coffee Pulp Extracts

  • Anchalee Rawangkan;Atchariya Yosboonruang;Anong Kiddee;Achiraya Siriphap;Grissana Pook-In;Ratsada Praphasawat;Surasak Saokaew;Acharaporn Duangjai
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1179-1188
    • /
    • 2023
  • Escherichia coli, particularly multidrug-resistant (MDR) strains, is a serious cause of healthcare-associated infections. Development of novel antimicrobial agents or restoration of drug efficiency is required to treat MDR bacteria, and the use of natural products to solve this problem is promising. We investigated the antimicrobial activity of dried green coffee (DGC) beans, coffee pulp (CP), and arabica leaf (AL) crude extracts against 28 isolated MDR E. coli strains and restoration of ampicillin (AMP) efficiency with a combination test. DGC, CP, and AL extracts were effective against all 28 strains, with a minimum inhibitory concentration (MIC) of 12.5-50 mg/ml and minimum bactericidal concentration of 25-100 mg/ml. The CP-AMP combination was more effective than CP or AMP alone, with a fractional inhibitory concentration index value of 0.01. In the combination, the MIC of CP was 0.2 mg/ml (compared to 25 mg/ml of CP alone) and that of AMP was 0.1 mg/ml (compared to 50 mg/ml of AMP alone), or a 125-fold and 500-fold reduction, respectively, against 13-drug resistant MDR E. coli strains. Time-kill kinetics showed that the bactericidal effect of the CP-AMP combination occurred within 3 h through disruption of membrane permeability and biofilm eradication, as verified by scanning electron microscopy. This is the first report indicating that CP-AMP combination therapy could be employed to treat MDR E. coli by repurposing AMP.

Antimicrobial Cyclic Dipeptides from Japanese Quail (Coturnix japonica) Eggs Supplemented with Probiotic Lactobacillus plantarum

  • Sa-Ouk Kang;Min-Kyu Kwak
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.314-329
    • /
    • 2024
  • Fifteen cyclic dipeptides (CDPs) containing proline, one cyclo(Phe-Ala) without proline, and a non-peptidyl ᴅⳑ-3-phenyllactic acid were previously identified in the culture filtrates of Lactobacillus plantarum LBP-K10, an isolate from kimchi. In this study, we used Japanese quail (Coturnix japonica) eggs to examine the effects of probiotic supplementation on the antimicrobial CDPs extracted from quail eggs (QE). Eggshell-free QE were obtained from two distinct groups of quails. The first group (K10N) comprised eggs from unsupplemented quails. The second group (K10S) comprised eggs from quails supplemented with Lb. plantarum LBP-K10. The QE samples were extracted using methylene chloride through a liquid-liquid extraction process. The resulting extract was fractionated into 16 parts using semi-preparative high-performance liquid chromatography. Two fractions, Q6 and Q9, were isolated from K10S and identified as cis-cyclo(ⳑ-Ser-ⳑ-Pro) and cis-cyclo(ⳑ-Leu-ⳑ-Pro). The Q9 fraction, containing cis-cyclo(ⳑ-Leu-ⳑ-Pro), has shown significant inhibitory properties against the proliferation of highly pathogenic multidrug-resistant bacteria, as well as human-specific and phytopathogenic fungi. Some of the ten combinations between the remaining fourteen unidentified fractions and two fractions, Q6 and Q9, containing cis-cyclo(ⳑ-Ser-ⳑ-Pro) and cis-cyclo(ⳑ-Leu-ⳑ-Pro) respectively, demonstrated a significant increase in activity against multidrug-resistant bacteria only when combined with Q9. The activity was 7.17 times higher compared to a single cis-cyclo(ⳑ-Leu-ⳑ-Pro). This study presents new findings on the efficacy of proline-containing CDPs in avian eggs. These CDPs provide antimicrobial properties when specific probiotics are supplemented.

Genotypic Investigation of Multidrug-Resistant Pseudomonas aeruginosa from Clinical Isolates in Korea, 2010 (2010년도 국내 임상에서 분리한 다제내성 녹농균의 유전자형 조사)

  • Kim, Min Ji;Cha, Min Kyeong;Lee, Do Kyung;Kang, Ju Yeon;Park, Jae Eun;Kim, Young Hee;Park, Il Ho;Shin, Hea Soon;Ha, Nam Joo
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.240-245
    • /
    • 2012
  • Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that causes serious infection, particularly in immunocompromised patients. Also, P. aeruginosa possessing carbapenem-resistant metallo-${\beta}$-lactamases (MBL) has been reported with increasing frequency in Korea. We therefore analyzed the level of multidrug-resistant clinical P. aeruginosa isolated from a secondary hospital in Korea in 2010. A total of 92 isolates of P. aeruginosa were collected from Sahmyook Medical Center in 2010. Susceptibility to antimicrobial agents was determined by analysis of the minimum inhibitory concentration test; the inhibitor-potentiated disk diffusion (IPD) test was performed for MBL detection. RAPD-PCR was used for genotyping to rapidly characterize P. aeruginosa strains isolated from clinical patients. The percentages of non-susceptible isolates were as follows: 40.2% to ceftazidime, 58.7% to meropenem, 56.5% to gentamicin, 46.7% to tobramycin, 62.0% to ciprofloxacin and 97.8% to chloramphenicol. The 29 multidrug-resistant strains were screened by the IPD test: of the 21 PCR-positive isolates, 19 were IPM-1 producers and 2 were VIM-2 producers. Among the 19 IMP-1-producing P. aeruginosa isolates, 16 isolates showed similar patterns, and three different banding patterns were observed. The proportion of IMP-1-producing multidrug-resistant P. aeruginosa from clinical isolates steadily increased in this secondary hospital in Korea in 2010. This study provides information about the antimicrobial-resistant patterns and genotype of multidrug-resistant P. aeruginosa isolated from clinical isolates in Korea, 2010.

Cytotoxicity and Multidrug -Resistance Reversing Activity of Extracts from Gamma-Irradiated Coix Zachryma-jobi L. var. ma-yuen Stapf Seed (감마선 조사된 율무종자의 세포독성 및 다제내성 극복활성)

  • Cha, Young-Ju;Lee, Sook-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.5
    • /
    • pp.613-618
    • /
    • 2005
  • This study was carried out to examine the effects of gamma irradiation on the cytotoxicity and multidrug-resistance reversing activity of methanol extracts from Coix lachryma-jobi L. var. me-yuen Stapf seed. The seed was irradiated with doses of 1, 4, 8, 16, 32 and 64 Gy of the gamma radiation, and then extracted by methanol. The extracts were examined for cytotoxicity on the human cancer cell lines, MCF-7 (human breast adenocarcinoma pleural effusion), Calu-6 (human pulmonary carcinoma) and SNU-601 (human gastric carcinoma) cells, and investigated for multidrug-resistance reversing activity using drug sensitive AML-2/WT and multidrug-resistant AML-2/D100 cells. The growth inhibitory activity of irradiated seed extracts on human cancer cell lines was higher than that of the control. In the case of Calu-6 cell line, the effect of cytotoxicity was observed in the extracts of 4, 8 and 16 Gy. $IC_{50}$ value in the MCF-7 cell line was measured in the only 8 Gy extract. And in the SNU-601 cell line as Calu-6, the effect of cytotoxicity was observed in the extracts of 4, 8 and 16 Gy. But the extracts of gamma-irradiated seed over 32 Gy showed little growth inhibitory effect against human cancer cell lines. In this result, 8 Gy extract had significant growth inhibitory in all human cancer cell lines $(Calu-6:\;633\;{\mu}g/mL,\;MCF-7:\;653\;{\mu}g/mL\;and\;SNU-601:\;683\;{\mu}g/mL)$. The extracts of 4, 8 and 16 Gy strongly potentiated vincristine cytotoxicity in AML-2/D100 cells. The reversal fold (RF) of 4, 8 and 16 Gy extracts was 1.7, 1.8 and 1.6, respectively. But their cytotoxicities to both sensitive AML-2/WT and resistant AML-2/D100 cells were in the same order of magnitude. These results indicate that the above samples would contain some principles which have cytotoxicity and multidrug-resistance reversing activity. Irradiation technology can be applied to promote physiological activities of medicinal plant seeds.

Complete Genome Sequence of Salmonella enterica Serovar Pullorum Multidrug Resistance Strain S06004 from China

  • Li, Qiuchun;Hu, Yachen;Wu, Yinfei;Wang, Xiaochun;Xie, Xiaolei;Tao, Mingxin;Yin, Junlei;Lin, Zhijie;Jiao, Yang;Xu, Lijuan;Jiao, Xinan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.606-611
    • /
    • 2015
  • As Salmonella enterica serovar Pullorum remains a major economic problem for the poultry industries of countries with no efficient control measures, we presented a multidrug resistance strain S06004 (isolated from a clinically sick chicken in China in 2006) for genome sequencing. The genome comparison showed that the strain contained two prophages, the ST104 and prophage-4 (Fels2) of E. coli LF82, which were not detected in the only published genomes of S. Pullorum RKS5078 and CDC1983-67. In addition, the GyrA Ser83 point mutation, drugresistant genes, and many antibiotic pump systems that are present in S06004 may be contributing to the multidrug resistance of this strain.

Celecoxib Enhances Susceptibility of Multidrug Resistant Cancer Cells to 17-Allylamino-17-demethoxy geldanamycin through Dual Induction of Apoptotic and Autophagic Cell Death (Celecoxib의 apoptotic 및 autophagic cell death 유도에 의한 항암제 다제내성 암세포의 17-allylamino-17-demethoxygeldanamycin 감수성 증강)

  • Moon, Hyun-Jung;Park, So-Young;Lee, Su-Hoon;Kang, Chi-Dug;Kim, Sun-Hee
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.778-785
    • /
    • 2018
  • Autophagy is a complex signaling process and has been implicated in tumor suppression and anticancer therapy resistance. Autophagy can produce tumor-suppressive effect by inducing autophagic cell death, either in collaboration with apoptosis. In this current study, we found that celecoxib (CCB), a nonsteroidal anti-inflammatory drug (NSAID) with multifaceted effects, induced autophagy including enhanced LC3 conversion (LC3-I to LC3-II) and reduced autophagy substrate protein p62 level in multidrug-resistant (MDR) cancer cells. CCB sensitized human multidrug resistant (MDR) cancer cells to the ansamycin-based HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), a benzoquinoid ansamycin, which causes the degradation of several oncogenic and signaling proteins, by inducing autophagic cell death and apoptosis. CCB significantly augmented 17-AAG-mediated level of LC3-II/LC-I, indicating the combined effect of 17-AAG and CCB on the induction of autophagy. Autophagic degradation of mutant p53 (mutp53) and activation of caspase-3 in 17-AAG-treated MDR cells were accelerated by CCB. Inhibition of caspase-3-mediated apoptotic pathway by Z-DEVD-FMK, a caspase-3 inhibitor, did not completely block CCB-induced cell death in MCF7-MDR cells. In addition, treatment of MDR cells with Z-DEVD-FMK failed to prevent activation of autophagy by combined treatment with 17-AAG and CCB. Based on our findings, the ability of clinically used drug CCB to induce autophagy has important implications for its development as a sensitizing agent in combination with Hsp90 inhibitor of MDR cancer.

Probiotics with Antimicrobial Activity against Multidrug Resistant Pseudomonas aeruginosa and Acinetobacter baumannii (다제내성 녹농균과 아시네토박터 바우마니에 항균활성을 가지는 프로바이오틱스)

  • Lee, Do Kyung;Kim, Min Ji;Kang, Joo Yeon;Park, Jae Eun;Shin, Hea Soon;Ha, Nam Joo
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.245-252
    • /
    • 2013
  • Pseudomonas aeruginosa and Acinetobacter baumannii are significant opportunistic pathogens in hospitals and are resistant to most antibiotics. Multidrug-resistant P. aeruginosa (MDRPA) and A. baumannii (MDRAB) cause severe human nosocomial infections and are more difficult to treat than methicillin-resistant Staphylococcus aureus (MRSA). Bifidobacteria are among of the most beneficial probiotics and have been widely studied for their antimicrobial activities. The present study explored the antimicrobial activity of Bifidobacterium sp. isolated from healthy Koreans against MDRPA and MDRAB. The antimicrobial activity of the isolates against MDRPA and MDRAB, which are resistant to ciprofloxacin, tobramycin, gentamicin, meropenem, and ceftazidime, was determined by modified broth microdilution methods using absorbance. Among all tested bifidobacteria isolates (nine B. adolescentis, three B. longum, and two B. pseudocatenulatum), the culture supernatant of B. pseudocatenulatum SPM1309 showed a strong growth inhibitory effect against MDRPA and MDRAB. No change in the turbidity of the mixture was observed during incubation, and its inhibitory effect occurred through bacteriostastic action. Moreover, the antibacterial activity was observed in the fraction with molecular weights <10 kDa of bifidobacteria culture supernatant, and the active fraction was heat-stable because it maintained its activity when heated at $70^{\circ}C$ for 10 min. The results suggest that this Bifidobacterium strain could have potential applications for alternative therapy in MDRPA and MDRAB infections.

Inhibitory Effect of Curcumin on MDR1 Gene Expression in Patient Leukemic Cells

  • Anuchapreeda, Songyot;Thanarattanakorn, Pattra;Sittipreechacharn, Somjai;Tima, Singkome;Chanarat, Prasit;Limtrakul, Pornngarm
    • Archives of Pharmacal Research
    • /
    • v.29 no.10
    • /
    • pp.866-873
    • /
    • 2006
  • When patients with cancers are treated with chemotherapeutic agents a long time, some of the cancer cells develop the multidrug resistance (MDR) phenotype. MDR cancer cells are characterized by the overexpression of multidrug resistance1 (MDR1) gene which encodes P-glycoprotein (Pgp), a surface protein of tumor cells that functions to produce an excessive efflux and thereby an insufficient intracellular concentration of chemotherapeutic agents. A variety of studies have sought potent MDR modulators to decrease MDR1 gene expression in cancer cells. Our previous study has shown that curcumin exhibits characteristics of a MDR modulator in KB-V1 multidrug-resistant cells. The aim of this study was to further investigate the effect of curcumin on MDR1 gene expression in patient leukemic cells. The leukemic cells were collected from 78 childhood leukemia patients admitted at Maharaj Nakorn Chiang Mai Hospital, Chiang Mai, Thailand, in the period from July 2003 to February 2005. There were 61 cases of acute lymphoblastic leukemia (ALL), 14 cases of acute myeloblastic leukemia (AML), and 3 cases of chronic myelocytic leukemia (CML). There were 47 males and 31 females ranging from 1 to 15 years old. Bone marrows were collected. The leukemic cells were separated and cultured in the presence or absence of $10{\mu}M$ curcumin for 48 hours. MDR1 mRNA levels were determined by RT-PCR. It was found that curcumin reduced MDR1 gene expression in the cells from 33 patients (42%). Curcumin affected the MDR1 gene expression in 5 of 11 relapsed cases (45%), 10 of 26 cases of drug maintenance (38%), 7 of 18 cases of completed treatment (39%), and 11 of 23 cases of new patients (48%). The expression levels of MDR1 gene in leukemic patient cells as compared to that of KB-V1 cells were classified as low level (1-20%) in 5 of 20 cases (25%), medium level (21-60%) in 14 of 32 cases (44%), and high level (61-100%) in 14 of 20 cases (70%). In summary, curcumin decreased MDR1 mRNA level in patient leukemic cells, especially in high level of MDR1 gene groups. Thus, curcumin treatment may provide a lead for clinical treatment of leukemia patients in the future.