DOI QR코드

DOI QR Code

Complete Genome Sequence of Salmonella enterica Serovar Pullorum Multidrug Resistance Strain S06004 from China

  • Li, Qiuchun (Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University) ;
  • Hu, Yachen (Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University) ;
  • Wu, Yinfei (Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University) ;
  • Wang, Xiaochun (Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University) ;
  • Xie, Xiaolei (Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University) ;
  • Tao, Mingxin (Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University) ;
  • Yin, Junlei (Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University) ;
  • Lin, Zhijie (Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University) ;
  • Jiao, Yang (Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University) ;
  • Xu, Lijuan (Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University) ;
  • Jiao, Xinan (Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University)
  • Received : 2014.06.10
  • Accepted : 2014.11.11
  • Published : 2015.05.28

Abstract

As Salmonella enterica serovar Pullorum remains a major economic problem for the poultry industries of countries with no efficient control measures, we presented a multidrug resistance strain S06004 (isolated from a clinically sick chicken in China in 2006) for genome sequencing. The genome comparison showed that the strain contained two prophages, the ST104 and prophage-4 (Fels2) of E. coli LF82, which were not detected in the only published genomes of S. Pullorum RKS5078 and CDC1983-67. In addition, the GyrA Ser83 point mutation, drugresistant genes, and many antibiotic pump systems that are present in S06004 may be contributing to the multidrug resistance of this strain.

Keywords

References

  1. Baker J, Wright SH, Tama F. 2013. Simulations of substrate transport in the multidrug transporter. Proteins 80: 1620-1632. https://doi.org/10.1002/prot.24056
  2. Barrow PA, Freitas Neto OC. 2011. Pullorum disease and fowl typhoid - newt houghts on old diseases: a review. Avian Pathol. 40: 1-13. https://doi.org/10.1080/03079457.2010.542575
  3. Baucheron S, Tyler S, Boyd D, Mulvey MR, Chaslus-Dancla E, Cloeckaert A. 2004. AcrAB-TolC directs efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium DT104. Antimicrob. Agents Chemother. 48: 3729-3735. https://doi.org/10.1128/AAC.48.10.3729-3735.2004
  4. Borodovsky M, Lomsadze A. 2011. Gene identification in prokaryotic genomes, phages, metagenomes, and EST sequences with GeneMarkS suite. Curr. Protoc. Microbiol. 4: Unit 4.5.1-17.
  5. Brill S, Falk OS, Schuldiner S. 2012. Transforming a drug/H+ antiporter into a polyamine importer by a single mutation. Proc. Natl. Acad. Sci. USA 109: 16894-16899. https://doi.org/10.1073/pnas.1211831109
  6. Chen S, Cui S, McDermott PF, Zhao S, White DG, Paulsen I, et al. 2007. Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar Typhimurium to fluoroquinolones and other antimicrobials. Antimicrob. Agents Chemother. 51: 535-542. https://doi.org/10.1128/AAC.00600-06
  7. Chu X, Wu L, Liu X, Li N, Li D. 2008. Detection of broadspectrum aminoglycoside antibiotics through fluorescencelabeling aminoglycoside acetyltransferase(6’)-Ii. Anal. Biochem. 376: 144-150. https://doi.org/10.1016/j.ab.2008.01.032
  8. Eaves DJ, Ricci V, Piddock LJ. 2004. Expression of acrB, acrF, acrD, marA, and soxS in Salmonella enterica serovar Typhimurium: role in multiple antibiotic resistance. Antimicrob. Agents Chemother. 48: 1145-1150. https://doi.org/10.1128/AAC.48.4.1145-1150.2004
  9. Feng Y, Xu HF, Li QH, Zhang SY, Wang CX, Zhu DL, et al. 2012. Complete genome sequence of Salmonella enterica serovar Pullorum RKS5078. J. Bacteriol. 194: 744. https://doi.org/10.1128/JB.06507-11
  10. Frye JG, Jackson CR. 2013. Genetic mechanisms of antimicrobial resistance identified in Salmonella enteric, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. Front. Microbiol. 4: 135. https://doi.org/10.3389/fmicb.2013.00135
  11. Geng SZ, Jiao XA, Pan ZM, Chen XJ, Zhang XM, Chen X. 2009. An improved method to knock out the asd gene of Salmonella enterica serovar Pullorum. J. Biomed. Biotechnol. 2009: 646380. https://doi.org/10.1155/2009/646380
  12. Hermans AP, Abee T, Zwietering MH, Aarts HJ. 2005. Identification of novel Salmonella enterica serovar Typhimurium DT104-specific prophage and nonprophage chromosomal sequences among serovar Typhimurium isolates by genomic subtractive hybridization. Appl. Environ. Microbiol. 71: 4979-4985. https://doi.org/10.1128/AEM.71.9.4979-4985.2005
  13. Hopkins KL, Davies RH, Threlfall EJ. 2005. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments. Int. J. Antimicrob. Agents 25: 358-373. https://doi.org/10.1016/j.ijantimicag.2005.02.006
  14. Horiyama T, Yamaguchi A, Nishino K. 2010. TolC dependency of multidrug efflux systems in Salmonella enterica serovar Typhimurium. J. Antimicrob. Chemother. 65: 1372-1376. https://doi.org/10.1093/jac/dkq160
  15. Jack DL, Storms ML, Tchieu JH, Paulsen IT, Saier MH. 2000. A broad-specificity multidrug efflux pump requiring a pair of homologous SMR-type proteins. J. Bacteriol. 182: 2311-2313. https://doi.org/10.1128/JB.182.8.2311-2313.2000
  16. Leung KY, Ruschkowski SR, Finlay BB. 1992. Isolation and characterization of the aadA aminoglycoside-resistance gene from Salmonella choleraesuis. Mol. Microbiol. 6:2453-2460. https://doi.org/10.1111/j.1365-2958.1992.tb01421.x
  17. Levy SB, Marshall B. 2004. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10: S122-S129. https://doi.org/10.1038/nm1145
  18. Li Q, Hu Y, Chen J, Liu Z, Han J, Sun L, et al. 2013. Identification of Salmonella enterica serovar Pullorum antigenic determinants expressed in vivo. Infect. Immun. 81: 3119-3127. https://doi.org/10.1128/IAI.00145-13
  19. Long F, Rouquette-Loughlin C, Shafer WM, Yu EW. 2008. Functional cloning and characterization of the multidrug efflux pumps NorM from Neisseria gonorrhoeae and YdhE from Escherichia coli. Antimicrob. Agents Chemother. 52: 3052-3260. https://doi.org/10.1128/AAC.00475-08
  20. Nishino K, Yamaguchi A. 2001. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J. Bacteriol. 183: 5803-5812. https://doi.org/10.1128/JB.183.20.5803-5812.2001
  21. Pan Z, Wang X, Zhang X, Geng S, Chen X, Pan W, et al. 2009. Changes in antimicrobial resistance among Salmonella enterica subspecies enterica serovar Pullorum isolates in China from 1962 to 2007. Vet. Microbiol. 136: 387-392. https://doi.org/10.1016/j.vetmic.2008.11.015
  22. Smith HE, Blair JM. 2014. Redundancy in the periplasmic adaptor proteins AcrA and AcrE provides resilience and an ability to export substrates of multidrug efflux. J. Antimicrob. Chemother. 69: 982-987. https://doi.org/10.1093/jac/dkt481
  23. Tanabe M, Szakonyi G, Brown KA, Henderson PJ, Nield J, Byrne B. 2009. The multidrug resistance efflux complex, EmrAB from Escherichia coli forms a dimer in vitro. Biochem. Biophys. Res. Commun. 380: 338-342. https://doi.org/10.1016/j.bbrc.2009.01.081
  24. Tanaka K, Nishimori K, Makino S, Nishimori T, Kanno T, Ishihara R, et al. 2004. Molecular characterization of a prophage of Salmonella enterica serotype Typhimurium DT104. J. Clin. Microbiol. 42: 1807-1812. https://doi.org/10.1128/JCM.42.4.1807-1812.2004
  25. Wigley P, Berchieri A Jr, Page KL, Smith AL, Barrow PA. 2001. Salmonella enterica serovar Pullorum persists in splenic macrophages and in the reproductive tract during persistent, disease-free carriage in chickens. Infect. Immun. 69: 7873-7879. https://doi.org/10.1128/IAI.69.12.7873-7879.2001
  26. Yamasaki S, Nagasawa S, Hayashi-Nishino M, Yamaguchi A, Nishino K. 2011. AcrA dependency of the AcrD efflux pump in Salmonella enterica serovar Typhimurium. J. Antibiot. (Tokyo) 64: 433-437. https://doi.org/10.1038/ja.2011.28
  27. Yin Y, He X, Szewczyk P, Nguyen T, Chang G. 2006. Structure of the multidrug transporter EmrD from Escherichia coli. Science 312: 741-744. https://doi.org/10.1126/science.1125629

Cited by

  1. Construction and characterization of acigRdeletion mutant ofSalmonella entericaserovar Pullorum vol.45, pp.5, 2016, https://doi.org/10.1080/03079457.2016.1187708
  2. Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review vol.4, pp.None, 2015, https://doi.org/10.3389/fvets.2017.00126
  3. Outer Membrane Proteins of Salmonella as Potential Markers of Resistance to Serum, Antibiotics and Biocides vol.26, pp.11, 2015, https://doi.org/10.2174/0929867325666181031130851
  4. A Sensitive, Highly Specific Novel Isothermal Amplification Method Based on Single-Nucleotide Polymorphism for the Rapid Detection of Salmonella Pullorum vol.11, pp.None, 2015, https://doi.org/10.3389/fmicb.2020.560791
  5. Therapeutic Efficacy of Phage PIZ SAE-01E2 against Abortion Caused by Salmonella enterica Serovar Abortusequi in Mice vol.86, pp.22, 2015, https://doi.org/10.1128/aem.01366-20