• Title/Summary/Keyword: multicopy

Search Result 42, Processing Time 0.032 seconds

Expression of Tunicamycin Resistance in Bacillus subtilsls by Several Transfroming Plasmids

  • Kong, In-Soo;Makari-Yamasaki
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.529.2-529
    • /
    • 1986
  • pSp-Si (1.6kbp) was originally found in pediococcus halophilus to be a cryptic multicopy-plasmid. Hoping that the plasmid can also replicate in Bacillus subtilis, protoplast transformation of strain 207-25 (recE) was performed using pSP-Sl onto which was added the marker of tmrB8 (on 4.9 kbp EcoRI fragment ) or tmrB+ (on 0.9 kbp xbaI fragment) gene. Though the tmrB8 gene can expres tunicamycin-resistance at the single copy state, and the tmrB+ gene exerts the resistance only at the multicopy state, we could not confirm the replication of pSP-Sl (tmrB8) or pSP-Sl(tmrB+) in B. subtilis. During the experiment, however, we unexpectedly found that the circularized 0.9 kbp xgaI fragment (tmrB+) itself, which had no replication origin, could transform strain 207-25 to tunicamycin-resistant by protoplast transformation. Southern hybridization analyses with tmrB+ and other probes revealed the integration of the fragment at a single copy state into a position other than the homologous tmrB gene. This recE independent integration of another tmrB+ gene into the chromosome may contribute to the tunicamycinresistance in the transformants.

  • PDF

Molecular Characterization of the Genes Encoding Acetoacetyl-Coenzyme A Transferase from Serratia marcescens KCTC 2172

  • Yoo, Ju-Soon;Kim, Hae-Sun;Lee, Young-Choon;Chung, Soo-Yeol;Choi, Yong-Lark
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.870-875
    • /
    • 2001
  • A DNA fragment, pCKB13, containing two genes encoding Coenzyme a transferase, was isolated from a genomic DNA library of S. marcescens KCTC 2172. The complete nucleotide sequence of the 2,081-bp BamHI fragment on pCKB13 was determined. Sequencing of the fragment led to the identification of two open reading frames showing high homology with two Coenzyme A (CoA) transferases, Acetoacetyl-CoA transferase (Acot) and Succinyl-CoA transferase (Scot), enzymes catalyzing the reversible transfer of CoA from one carboxylic acid to another. The enzyme activity of Coenzyme A transferase increased after introducing the multicopy of the cloned gene in E. coli. The recombinant protein, overexpressed by multicopy and induction with IPTG, was a polypeptide of 42 kDa, as confirmed by SDS-PAGE. The protein was purified to homogeneity through three sequential chromatographic procedures including ion-exchanged DEAE-sepharose, CM-sepharose, and Mono Q.

  • PDF

Expression of the Aspergillus niger var. awamori Phytase Gene in Pichia pastoris, and Comparison of Biological Properties

  • CHOI, JAE-MUN;DOO-SANG KIM;MOON-SICK YANG;HYUNG-RAK KIM;JAE-HO KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1066-1070
    • /
    • 2001
  • The PhyA gene, encoding myo-inositol hexakisphosphate phosphohydrolase in Aspergillus niger var. awamori (wild-type), was cloned and sequenced. The cDNA was overexpressed by a multicopy gene expression system in Pichia pastoris KM71. Recombinant, wild-type and commercial phytase from Aspergilus ficuum NRRL 3135 (Natuphos) were purified. The PhyA gene of Aspergillus niger var awamori showed perfect homology to the phytase of Aspergillus ficcum and $97\%$ homology to A. niger var awamori (L02421). Wild-type phytase was highly glycosylated and more thermostable than the other two, while deglycosylated farms of three phytases showed identical molecular weight, 507 kDa. After heating at $80^{\circ}C$, wild-type, commercial, and recombinant phytases retained $57\%, 32%,\;and\;8\%$ of their original activities, respectively. In conclusion, glycosylation plays a key role in the thermostability of phytase and its enzymatic characterization.

  • PDF

Instability of pneumococcus library in pHC79 and pAcyc184

  • Rhee, Dong-Kwon
    • Archives of Pharmacal Research
    • /
    • v.18 no.1
    • /
    • pp.31-37
    • /
    • 1995
  • S. pneumoniae (pneumococcus) gene cloning and library construction in E. coli multicopy plasmid has been hampered, in part, by instability problems. In this study, stability of pneumococcus gene library in cosmid vector and pACYC184 was examined. Pneumococcus library in the cosmid vector pHC79 was extermely unstable that most of the recobinant clones were degenerated rapidly. Only 2 out 849 clones were stable and had appropriate insert size. Pneumococcus library in pACYC184 was also so unstable that the pneumococcal inserg and/or part of the vector were deleted. However, the instability problems seemed to be resolved when transcription teminator plasmid was employed for pneumococcus library construction.

  • PDF

Functional Effects of Increased Copy Number of the Gene Encoding Proclavaminate Amidino Hydrolase on Clavulanic Acid Production in Streptomyces clavuligerus ATCC 27064

  • Song, Ju-Yeon;Kim, Eun-Sook;Kim, Dae-Wi;Jesen, Susan E.;Lee, Kye-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.417-426
    • /
    • 2008
  • The effect of increasing levels of proclavaminate amidino hydrolase (Pah) on the rate of clavulanic acid production in Streptomyces clavuligerus ATCC 27064 was evaluated by increasing dosoge of a gene (pah2) encoding Pah. A strain (SMF5703) harboring a multicopy plasmid containing the pah2 gene showed significantly retarded cell growth and reduced clavulanic acid production, possibly attributable to the deleterious effects of the multicopy plasmid. In contrast, a strain (SMF5704) carrying a single additional copy of pah2 introduced into chromosome via an integrative plasmid showed enhanced production of clavulanic acid and increased levels of pah2 transcripts. Analysis of transcripts of other genes involved in the clavulanic acid biosynthetic pathway revealed a pattern similar to that seen in the parent. From these results, it appears that clavulanic acid production can be enhanced by duplication of pah2 through integration of a second copy of the gene into chromosome. However, increasing the copy number of only one gene, such as pah2, does not affect the expression of other pathway genes, and so only modest improvements in clavulanic acid production can be expected. Flux controlled by Pah did increase when the copy number of pah2 was doubled, suggesting that under these growth conditions, Pah levels may be a limiting factor regulating the rate of clavulanic acid biosynthesis in S. clavuligerus.

A Proteomic Approach to Study msDNA Function in Escherichia coli

  • Jeong, Mi-Ae;Lim, Dongbin
    • Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.200-204
    • /
    • 2004
  • Retron is a prokaryotic genetic element that produces multicopy single-stranded DNA covalently linked to RNA (msDNA) by a reverse transcriptase. It was found that cells producing a large amount of msDNA, rather than those that did not, showed a higher rate of mutation. In order to understand the molecular mechanism connecting msDNA production to the high mutation rate the protein patterns were compared by two dimensional gel electrophoresis. Ten proteins were found to be differentially expressed at levels more than three fold greater in cells with than without msDNA, nine of which were identified by MALDI TOF MS. Eight of the nine identified proteins were repressed in msDNA-producing cells and, surprisingly, most were proteins functioning in the dissimilation of various carbon sources. One protein was induced four fold greater in the msDNA producing cells and was identified as a 30S ribosomal protein S2 involved in the regulation of translation. The molecular mechanism underlying the elevated mutation in msDNA-producing cell still remains elusive.

Transduction of the Wild-type polA Gene of Escherichia coli K-12 in a ColE1-Derived Mini-Mu Plasmid

  • Parduez, Nagy-Gyorgy;Choi, Yong-Keel;Chung, Young-Sup
    • Korean Journal of Microbiology
    • /
    • v.30 no.2
    • /
    • pp.134-140
    • /
    • 1992
  • Teh $polA^{+}$ gene can be transducted in a multicopy mini-Mu plasmid, but not cloned because the product of this gene is lethal when overproduced. Although, we obtained one surviving cell, in which the ColEl-derived mini-Mu plasmid suffered a spontaneous deletion exactly at the region where the $polA^{+}$ gene was cloned. The $PolA^{+}$ unstream flanking sequence containing the promoter and pribnow-box was delected in vivo ; consequently this gene is not able to be expressed.

  • PDF

Analysis and cloning of the gene involved in activation of maltose metabolism in Serratia marcescens. (Serratia marecscens에서 maltose 대사를 촉진하는 유전자의 클로닝 해석)

  • 이승진;유주순;김혜선;이상철;정수열;최용락
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.21-25
    • /
    • 2000
  • We have got several clones from Serratia marcescens which stimulated the cells to use maltose as a carbon source in Escherichia. coli TP2139 ( lac, crp). One of the cloned genes, pCKB17, was further analyzed. In order to find whether the increased expression of the gent was under the direction of maltose metabolism, we constructed several recombinant subclones. We have found that the clone, pCKB17AV, codes maltose metabolism stimulation(mms) gene. E. coli transformed with the cloned gene showed increase in the activity of maltose utilzation, The recombinant proteins expressed by multicopy and induction with IPTG, one polypeptide of 29-kDa, was confirmed by SDS-PAGE. The overexpression of maltose-binding proter protein in the presence of mms gene was confirmed by Western blot analysis. Southern hybridization analysis confirmed that the cloned DNA fragment was originated from S. marcescens chromosomal DNA.

  • PDF

Functional Complementation of Escherichia coli by the rpoS Gene of the Foodborne Pathogenic Vibrio vulnificus

  • Park, Kyung-Je;Kim, Song-Hee;Kim, Min-Gon;Chung, Duck-Hwa;Ha, Sang-Do;Kim, Keun-Sung;Jahng, Deok-jin;Lee, Kyu-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1063-1066
    • /
    • 2004
  • The rpoS gene product is a global transcriptional factor, which is involved in bacterial survival under various stress conditions. An rpoS-homologous gene was cloned from a septicemia-causing pathogenic Vibrio vulnificus. Introduction of this gene as a multicopy plasmid into various E. coli strains displayed functional complementation, for examples, increased survivability of an rpoS-defective E. coli cell and induction of known $\delta^S$-dependent, stress-responding promoters of E. coli genes.

IscR Modulates Catalase A (KatA) Activity, Peroxide Resistance, and Full Virulence of Pseudomonas aeruginosa PA14

  • Kim, Seol-Hee;Lee, Bo-Young;Lau, Gee W.;Cho, You-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1520-1526
    • /
    • 2009
  • We have identified the iscR (PA3815) gene encoding an iron-sulfur cluster assembly regulator homolog as one of the genes required for peroxide resistance in Pseudomonas aeruginosa PA14. Here, we present the phenotypic characterization of an iscR deletion mutant in terms of KatA expression, stress responses, and virulence. The iscR null mutant exhibited reduced KatA activity at the posttranslational level, hypersensitivity to hydrogen peroxide, and virulence-attenuation in Drosophila melanogaster and mouse peritonitis models. These phenotypes were fully restored by multicopy-based expression of katA. These results suggest that the requirement of IscR in P. aeruginosa is related to the proper activity of KatA, which is crucial for peroxide resistance and full virulence of this bacterium.