• Title/Summary/Keyword: multi-time scale

Search Result 522, Processing Time 0.029 seconds

Design and Implementation of Moving Object Model for Nearest Neighbors Query Processing based on Multi-Level Global Fixed Gird (다단계 그리드 인덱스 기반 최근접 질의 처리를 위한 이동체 DBMS 모델의 설계와 구현)

  • Joo, Yong-Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.13-21
    • /
    • 2011
  • In mobile environment supporting mobility technologies, user requirements have been increased with respect to utilization of location information. In particular, moving object DBMS has consistently posed in order to efficiently maintain traffic information related to location of vehicle which tents to tremendously change over time. Despite the fact that these sorts of researches must be taken into consideration, empirical studies on moving object in terms of map database for lbs service, spatial attribute of which is continuously changed over time, have rarely performed. Therefore, aim of this paper is to suggest efficient spatial index scheme, which is capable of supporting query processing algorithm and location of moving object over time, by developing new empirical model. As a result, we can come to the conclusion that moving object model based on multi-fixed grid index makes it possible to cut down on the number of entity for retrieving. What's more, this model enables hierarchical data to be accessed through efficient spatial filtering on large-scale lbs data and constraints in accordance with level in order to display map.

Representation of Model Uncertainty in the Short-Range Ensemble Prediction for Typhoon Rusa (2002) (단기 앙상블 예보에서 모형의 불확실성 표현: 태풍 루사)

  • Kim, Sena;Lim, Gyu-Ho
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.1-18
    • /
    • 2015
  • The most objective way to overcome the limitation of numerical weather prediction model is to represent the uncertainty of prediction by introducing probabilistic forecast. The uncertainty of the numerical weather prediction system developed due to the parameterization of unresolved scale motions and the energy losses from the sub-scale physical processes. In this study, we focused on the growth of model errors. We performed ensemble forecast to represent model uncertainty. By employing the multi-physics scheme (PHYS) and the stochastic kinetic energy backscatter scheme (SKEBS) in simulating typhoon Rusa (2002), we assessed the performance level of the two schemes. The both schemes produced better results than the control run did in the ensemble mean forecast of the track. The results using PHYS improved by 28% and those based on SKEBS did by 7%. Both of the ensemble mean errors of the both schemes increased rapidly at the forecast time 84 hrs. The both ensemble spreads increased gradually during integration. The results based on SKEBS represented model errors very well during the forecast time of 96 hrs. After the period, it produced an under-dispersive pattern. The simulation based on PHYS overestimated the ensemble mean error during integration and represented the real situation well at the forecast time of 120 hrs. The displacement speed of the typhoon based on PHYS was closest to the best track, especially after landfall. In the sensitivity tests of the model uncertainty of SKEBS, ensemble mean forecast was sensitive to the physics parameterization. By adjusting the forcing parameter of SKEBS, the default experiment improved in the ensemble spread, ensemble mean errors, and moving speed.

Sources separation of passive sonar array signal using recurrent neural network-based deep neural network with 3-D tensor (3-D 텐서와 recurrent neural network기반 심층신경망을 활용한 수동소나 다중 채널 신호분리 기술 개발)

  • Sangheon Lee;Dongku Jung;Jaesok Yu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.357-363
    • /
    • 2023
  • In underwater signal processing, separating individual signals from mixed signals has long been a challenge due to low signal quality. The common method using Short-time Fourier transform for spectrogram analysis has faced criticism for its complex parameter optimization and loss of phase data. We propose a Triple-path Recurrent Neural Network, based on the Dual-path Recurrent Neural Network's success in long time series signal processing, to handle three-dimensional tensors from multi-channel sensor input signals. By dividing input signals into short chunks and creating a 3D tensor, the method accounts for relationships within and between chunks and channels, enabling local and global feature learning. The proposed technique demonstrates improved Root Mean Square Error and Scale Invariant Signal to Noise Ratio compared to the existing method.

Residual Stress on Concentric Laminated Fibrous Al2O3-ZrO2 Composites on Prolonged High Temperature Exposure

  • Sarkar, Swapan Kumar;Lee, Byong Taek
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.531-536
    • /
    • 2013
  • This paper investigates the effect of prolonged high temperature exposure on concentric laminated $Al_2O_3-ZrO_2$ composites. An ultrafine scale microstructure with a cellular 7 layer concentric lamination with unidirectional alignment was fabricated by a multi-pass extrusion method. Each laminate in the microstructure was $2-3{\mu}m$ thick. An alternate lamina was composed of 75%$Al_2O_3$-(25%m-$ZrO_2$) and t-$ZrO_2$ ceramics. The composite was sintered at $1500^{\circ}C$ and subjected to $1450^{\circ}C$ temperature for 24 hours to 72 hours. We investigated the effect of long time high temperature exposure on the generation of residual stress and grain growth and their effect on the overall stability of the composites. The residual stress development and its subsequent effect on the microstructure with the edge cracking behavior mechanism were investigated. The residual stress in the concentric laminated microstructure causes extensive micro cracks in the t-$ZrO_2$ layer, despite the very thin laminate thickness. The material properties like Vickers hardness and fracture toughness were measured and evaluated along with the microstructure of the composites with prolonged high temperature exposure.

Buckling analysis of tapered BDFGM nano-beam under variable axial compression resting on elastic medium

  • Heydari, Abbas;Shariati, Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.737-748
    • /
    • 2018
  • The current study presents a new technique in the framework of the nonlocal elasticity theory for a comprehensive buckling analysis of Euler-Bernoulli nano-beams made up of bidirectional functionally graded material (BDFGM). The mechanical properties are considered by exponential and arbitrary variations for axial and transverse directions, respectively. The various circumstances including tapering, resting on two-parameter elastic foundation, step-wise or continuous variations of axial loading, various shapes of sections with various distribution laws of mechanical properties and various boundary conditions like the multi-span beams are taken into account. As far as we know, for the first time in the current work, the buckling analyses of BDFGM nano-beams are carried out under mentioned circumstances. The critical buckling loads and mode shapes are calculated by using energy method and a new technique based on calculus of variations and collocation method. Fast convergence and excellent agreement with the known data in literature, wherever possible, presents the efficiency of proposed technique. The effects of boundary conditions, material and taper constants, foundation moduli, variable axial compression and small-scale of nano-beam on the buckling loads and mode shapes are investigated. Moreover the analytical solutions, for the simpler cases are provided in appendices.

OBSERVATIONAL TEST STUDY OF TRAO OUTER GALAXY SURVEY COMPARING TO FCRAO OUTER GALAXY SURVEY (대덕전파천문대와 FCRAO의 외은하탐사 비교관측연구)

  • Lee, Y.;Jung, J.H.;Kang, H.W.;Lee, C.H.;Kim, H.G.;Kim, I.S;Kim, B.G.
    • Publications of The Korean Astronomical Society
    • /
    • v.25 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • We present results of a test-study of the large-scale survey using the multi-beam receiver system recently installed on the 14 m telescope at Taeduk Radio Astronomy Observatory (TRAO). We have tested several modes of mapping, and found suitable (time-saving) mapping parameters of 'ON-SOURCE' = 8, 'OFF-SOURCE' = 1 when using 'RPT' = 3 as a position-switching mode. We observed 504 spectra towards the NGC 7538, a star forming molecular cloud in the transition of J = 1 - 0 of $^{12}CO$. From the Outer Galaxy Survey database (Heyer et al., 1998) we obtained 504 spectra for the same region. We compared integrated intensities, line profiles of two databases, and found that they are consistent to each other. From the intensity ratio of these two databases we also found that the value of forward spillover scattering of the TRAO telescope system is 0.58.

Bursting Performance Analysis of a Pulse Separation Device for a Rocket Motor (추진기관 적용 펄스분리장치의 파열특성 분석)

  • Lee, Dong-Won;Lee, Won-Bok;Kim, In-Sik;Kim, Won-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.245-248
    • /
    • 2011
  • A multi pulse rocket motor(MPRM) has several advantages compared to the single one. The range and the terminal velocity of the guided missile can be remarkably increased by the application of the pulse separation device(PSD) to the solid rocket motor which resulted in appropriate thrust distribution. In this study, the full scale heavy type dual pulse rocket motor with the bulkhead type PSD was designed, manufactured, and fire-tested. The bursting time and pressure of PSD were analyzed by the pressure, thrust and vibration results of static fire tests. As a result, the design requirement was verified that bursting pressure is lower than 30% of 2nd pulse operating pressure.

  • PDF

Soil-structure interaction effect on active control of multi-story buildings under earthquake loads

  • Chen, Genda;Chen, Chaoqiang;Cheng, Franklin Y.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.517-532
    • /
    • 2000
  • A direct output feedback control scheme was recently proposed by the authors for single-story building structures resting on flexible soil body. In this paper, the control scheme is extended to mitigate the seismic responses of multi-story buildings. Soil-structure interaction is taken into account in two parts: input at the soil-structure interface/foundation and control algorithm. The former reflects the effect on ground motions and is monitored in real time with accelerometers at foundation. The latter includes the effect on the dynamic characteristics of structures, which is formulated by modifying the classical linear quadratic regulator based on the fundamental mode shape of the soil-structure system. Numerical result on the study of a $\frac{1}{4}$-scale three-story structure, supported by a viscoelastic half-space of soil mass, have demonstrated that the proposed algorithm is robust and very effective in suppressing the earthquake-induced vibration in building structures even supported on a flexible soil mass. Parametric studies are performed to understand how soil damping and flexibility affect the effectiveness of active tendon control. The selection of weighting matrix and effect of soil property uncertainty are investigated in detail for practical applications.

Object Dimension Estimation for Remote Visual Inspection in Borescope Systems

  • Kim, Hyun-Sik;Park, Yong-Suk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4160-4173
    • /
    • 2019
  • Borescopes facilitate the inspection of areas inside machines and systems that are not directly accessible for visual inspection. They offer real-time, up-close access to confined and hard-to-access spaces without having to dismantle or destructure the object under inspection. Borescopes are ideal instruments for routine maintenance, quality inspection and monitoring of systems and structures. The main application being fault or defect detection, it is useful to have measuring capability to quantify object dimensions in a target area. High-end borescopes use multi-optic solutions to provide measurement information of viewed objects. Multi-optic solutions can provide accurate measurements at the expense of structural complexity and cost increase. Measuring functionality is often unavailable in low-end, single camera borescopes. In this paper, a single camera measurement solution that enables the size estimation of viewed objects is proposed. The proposed solution computes and overlays a scaled grid of known spacing value over the screen view, enabling the human inspector to estimate the size of the objects in view. The proposed method provides a simple means of measurement that is applicable to low-end borescopes with no built-in measurement capability.

Multimode-fiber Speckle Image Reconstruction Based on Multiscale Convolution and a Multidimensional Attention Mechanism

  • Kai Liu;Leihong Zhang;Runchu Xu;Dawei Zhang;Haima Yang;Quan Sun
    • Current Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.463-471
    • /
    • 2024
  • Multimode fibers (MMFs) possess high information throughput and small core diameter, making them highly promising for applications such as endoscopy and communication. However, modal dispersion hinders the direct use of MMFs for image transmission. By training neural networks on time-series waveforms collected from MMFs it is possible to reconstruct images, transforming blurred speckle patterns into recognizable images. This paper proposes a fully convolutional neural-network model, MSMDFNet, for image restoration in MMFs. The network employs an encoder-decoder architecture, integrating multiscale convolutional modules in the decoding layers to enhance the receptive field for feature extraction. Additionally, attention mechanisms are incorporated from both spatial and channel dimensions, to improve the network's feature-perception capabilities. The algorithm demonstrates excellent performance on MNIST and Fashion-MNIST datasets collected through MMFs, showing significant improvements in various metrics such as SSIM.