• Title/Summary/Keyword: multi-spectral reflectance

Search Result 71, Processing Time 0.027 seconds

Optimization of color filters selection to estimate surface spectral reflectance of Munsell colors (물체의 분광반사율 추정을 위한 최적필터의 선정)

  • 이승희;이을환;유미옥;노상철;안석출
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.16 no.3
    • /
    • pp.121-131
    • /
    • 1998
  • The object color does not look same under the different light source. It depends on the surface spectral reflectance and the spectral distribution of light source. Therefore we should find the surface spectral reflectance of object color and the spectral distribution of light source for color reproduction. Using Wiener estimation, we can estimate the spectral reflectance from low dimensional images obtained with multi-band image acquisition system. The kind and the number of imaging filters have the effect on the estimation of the spectral reflectance. Therefore it is important that optimal filters are selected to minimize the error of the result. In this paper, we describe methods to select optimal filters with minimum error between measured and estimated surface spectral reflectance and to estimate surface spectral reflectance of Munsell color chart from six multi-band images by using Wiener estimation.

  • PDF

Advanced surface spectral-reflectance estimation using a population with similar colors (유사색 모집단을 이용한 개선된 분광 반사율 추정)

  • 이철희;김태호;류명춘;오주환
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2001.05a
    • /
    • pp.280-287
    • /
    • 2001
  • The studies to estimate the surface spectral reflectance of an object have received widespread attention using the multi-spectral camera system. However, the multi-spectral camera system requires the additional color filter according to increment of the channel and system complexity is increased by multiple capture. Thus, this paper proposes an algorithm to reduce the estimation error of surface spectral reflectance with the conventional 3-band RGB camera. In the proposed method, adaptive principal components for each pixel are calculated by renewing the population of surface reflectances and the adaptive principal components can reduce estimation error of surface spectral reflectance of current pixel. To evacuate performance of the proposed estimation method, 3-band principal component analysis, 5-band wiener estimation method, and the proposed method are compared in the estimation experiment with the Macbeth ColorChecker. As a result, the proposed method showed a lower mean square ems between the estimated and the measured spectra compared to the conventional 3-band principal component analysis method and represented a similar or advanced estimation performance compared to the 5-band wiener method.

  • PDF

An Approach to Measurement of Water Quality Factors and its Application Using NOAA satellite Data

  • Jang, Dong-Ho;Jo, Gi-Ho;Chi, Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.363-370
    • /
    • 1999
  • Remotely sensed data is regarded as a potentially effective data source for the measurement of water quality and for the environmental change of water bodies. In this study, we measured the spectral reflectance by using multi-spectral image of low resolution camera(LRC) which will be loaded in the OSMI multi-purpose satellite(KOMPSAT) scheduled to be launched on 1999 to use the data in analyzing water pollution. We also investigated the possibility of extraction of water quality factors in water bodies by using remotely sensed low resolution data such as NOAA/AVHRR. In this study, Shiwha-District and Sang-Sam Lake was set up as the subject areas for the study. In this part of the study, we measured the spectral reflectance of the water surface to analyze the radiance of the water bodies in low resolution spectral band and tried to analyze the water quality factors in water bodies by using radiance feature from another remotely sensed data such as NOAA/AVHRR. As the method of this study, first, we measured the spectral reflectance of the water surface by using SFOV( Single Field of View) to measure the reflectance of water quality analysis from every channel in LRC spectral band(0.4~O.9${\mu}{\textrm}{m}$). Second, we investigated the usefulness of ground truth data and the LRC data by measuring every spectral reflectance of water quality factors. Third, we analyzed water quality factors by using the radiance feature from another remotely sensed data such as NOAA/AVHRR. We carried out ratio process of what we selected Chlorophyll-a and suspended sediments as the first factors of the water quality. The results of the analysis are below. First, the amount of pollutants of Shiwha-Lake has been increasing every you since 1987 by factors of eutrophication. Second, as a result of the reflectance, Chlorophyll-a represented high spectral reflectance mainly around 0.52${\mu}{\textrm}{m}$ of green spectral band, and turbidity represented high spectral reflectance at 0.57${\mu}{\textrm}{m}$. But suspended sediments absorbed high at 0.8${\mu}{\textrm}{m}$. Third, Chlorophyll-a and suspended sediments could have a distribution chart as a result of the water quality analysis by using NOAA/AVHRR data.

  • PDF

The method to predict spectral reflectance of skin color by RGB color signals (RGB 색신호에 의한 피부색의 분광반사율 추정)

  • 김채경;박상택;김종필;이을환;안석출
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.16 no.3
    • /
    • pp.97-108
    • /
    • 1998
  • Spectral reflectance of the object should be measured to predict the color of object under various illuminants. The spectral reflectance can be represented in a multi-dimension space. Generally the information of inputed image by digital camera and color scanner is represented with 3-dimension color signals such as RGB. In other to predict the color of inputed image under any illuminant, we should be estimated spectral reflectance of the object. In this paper, we described the method to predict spectral reflectance by einenvector using the skin color of printed image, confirmed availability and propriety through experiment. we estimated spectral reflectance of skin color taken by RGB color signals and than reproduced skin color according to various illuminants on CRT.

  • PDF

Multi-Spectral Reflectance of Warm-Season Turfgrasses as Influenced by Deficit Irrigation (난지형 잔디의 가뭄 스트레스 상태로 인한 멀티스팩트럴 반사광 연구)

  • Lee, Joon-Hee;Trenholm, Laurie. E.;Unruh, J. Bryan
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • Remote sensing using multispectral radiometry may be a useful tool to detect drought stress in turf. The objective of this research was to investigate the correlation between drought stress and multispectral reflectance (MSR) from the turf canopy. St. Augustinegrass (Stenotaphrum secundatum[Walt.] Kuntze.) cultivars 'Floratam' and 'Palmetto', 'SeaIsle 1' seashore paspalum Paspalum vaginatum Swartz.), 'Empire' zoysiagrass (Zoysia japonica Steud.), and 'Pensacola' bahiagrass (Paspalum notatumFlugge) were established in lysimeters in the University of Florida Envirotron greenhouse facility in Gainesville. Irrigation was applied at 100%, 80%, 60%, or 40% of evapotranspiration (ET). Weekly evaluations included: a) shoot quality, leaf rolling, leaf firing b) soil moisture, chlorophyll content index; c) photosynthesis and d) multispectral reflectance. All the measurements were correlated with MSR data. Drought stress affected the infrared spectral region more than the visible spectral region. Reflectance sensitivity to water content of leaves was higher in the infrared spectral region than in the visible spectral region. Grasses irrigated at 100% and 80% of ET had no differences in normalized difference vegetation indices (NDVI), leaf area index (LAI), and stress indices. Grasses irrigated at 60% and 40% of ET had differences in NDVI, LAI, and stress indices. All measured wavelengths except 710nm were highly correlated (P < 0.0001) with turf visual quality, leaf firing, leaf rolling, soil moisture, chlorophyll content index, and photosynthesis. MSR could detect drought stress from the turf canopy.

Remote Sensing Cloud's Microphysical Properties by Satellite Data

  • Liu, Jian
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1258-1260
    • /
    • 2003
  • Cloud's properties can be showed on different spectral channel. The 0.65${\mu}$m reflectance is mainly function of cloud optical thickness and reflectance of 1.6${\mu}$m is sensitive to cloud phase and particle size distribution. So we can use multi-spectral information to analysis cloud's microphysical properties.

  • PDF

Estimation of Surface Spectral Reflectance using A Population with Similar Colors (유사색 모집단을 이용한 물체의 분광 반사율 추정)

  • 이철희;서봉우;안석출
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.1
    • /
    • pp.37-45
    • /
    • 2001
  • The studies to estimate the surface spectral reflectance of an object have received widespread attention using the multi-spectral camera system. However, the multi-spectral camera system requires the additional color filter according to increment of the channel and system complexity is increased by multiple capture. Thus, this paper proposes an algorithm to reduce the estimation error of surface spectral reflectance with the conventional 3-band RGB camera. In the proposed method, adaptive principal components for each pixel are calculated by renewing the population of surface reflectances and the adaptive principal components can reduce estimation error of surface spectral reflectance of current pixel. To evaluate performance of the proposed estimation method, 3-band principal component analysis, 5-band wiener estimation method, and the proposed method are compared in the estimation experiment with the Macbeth Color Checker. As a result, the proposed method showed a lower mean square error between the estimated and the measured spectra compared to the conventional 3-band principal component analysis method and represented a similar or advanced estimation performance compared to the 5-band wiener method.

  • PDF

An Experimental Study on the Image-Based Atmospheric Correction Using Multispectral Data

  • Lee Kwang-Jae;Kim Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.196-200
    • /
    • 2004
  • The purpose of this study is to examine the image­based atmospheric correction models using the data from Landsat Enhanced Thermal Mapper Plus (ETM+) that have quite similar spectral characteristics to the forthcoming Korea Multi-Purpose SATellite (KOMPSAT)-2 Multi-Spectral Camera (MSC), and the in-situ measured surface reflectance data during satellite overflight. The main advantage of this type of correction is that it does not require in-situ measurements during each satellite overflight. While substantial differences are present between Top-Of-the Atmosphere (TOA) reflectance and in-situ measurements, the results showed that Case 1 based on COST model gives most accurate results among three cases. The accuracy of Case 2 is very close to Case 1 and its values are smaller than in-situ data. No notable features appear between some bands in the Case 3 and in-situ data. It is expected from this study that if the current methods are applied to the IKONOS high resolution data, we will be able to develop the suitable atmospheric correction methods for MSC data.

  • PDF

Atmospheric Correction Problems with Multi-Temporal High Spatial Resolution Images from Different Satellite Sensors

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.321-330
    • /
    • 2015
  • Atmospheric correction is an essential part in time-series analysis on biophysical parameters of surface features. In this study, we tried to examine possible problems in atmospheric correction of multitemporal High Spatial Resolution (HSR) images obtained from two different sensor systems. Three KOMPSAT-2 and two IKONOS-2 multispectral images were used. Three atmospheric correction methods were applied to derive surface reflectance: (1) Radiative Transfer (RT) - based absolute atmospheric correction method, (2) the Dark Object Subtraction (DOS) method, and (3) the Cosine Of the Uun zeniTh angle (COST) method. Atmospheric correction results were evaluated by comparing spectral reflectance values extracted from invariant targets and vegetation cover types. In overall, multi-temporal reflectance from five images obtained from January to December did not show consistent pattern in invariant targets and did not follow a typical profile of vegetation growth in forests and rice field. The multi-temporal reflectance values were different by sensor type and atmospheric correction methods. The inconsistent atmospheric correction results from these multi-temporal HSR images may be explained by several factors including unstable radiometric calibration coefficients for each sensor and wide range of sun and sensor geometry with the off-nadir viewing HSR images.

Estimation of the Potato Growth Information Using Multi-Spectral Image Sensor (멀티 스펙트럴 이미지 센서를 이용한 감자의 생육정보 예측)

  • Kang, Tae-Hwann;Noguchi, Noboru
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.180-186
    • /
    • 2011
  • The objective of this research was to establish the estimation method of growth information on potato using Multi-Spectral Image Sensor (MSIS) and Global Positioning System (GPS). And growth estimation map for determining a prescription map over the entire field was generated. To determine the growth model, 10 ground-truth points of areas of $4m^2$ each were selected and investigated. The growth information included stem number, crop height and SPAD value. In addition, images information involving the ground-truth points were also taken by an unmanned helicopter, and reflectance value of Green, Red, and NIR bands were calculated with image processing. Then, growth status of potato was modeled by multi-regression analysis using these reflectance value of Green, Red, and NIR. As a result, potato growth information could be detected by analyzing Green, Red, and NIR images. Stem number, crop height and SPAD value could be estimated with $R^2$ values of 0.600, 0.657 and 0.747 respectively. The generated GIS map would describe variability of the potato growth in a whole field.