• Title/Summary/Keyword: multi-span bridge

Search Result 153, Processing Time 0.167 seconds

Vertical vibrations of a multi-span beam steel bridge induced by a superfast passenger train

  • Klasztorny, M.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.3
    • /
    • pp.267-281
    • /
    • 2001
  • Transient and quasi-steady-state vertical vibrations of a multi-span beam steel bridge located on a single-track railway line are considered, induced by a superfast passenger train, moving at speed 120-360 km/h. Matrix dynamic equations of motion of a simplified model of the system are formulated partly in the implicit form. A recurrent-iterative algorithm for solving these equations is presented. Excessive vibrations of the system in the resonant zones are reduced effectively with passive dynamic absorbers, tuned to the first mode of a single bridge span. The dynamic analysis has been performed for a series of types of bridges with span lengths of 10 to 30 m, and with parameters closed to multi-span beam railway bridges erected in the second half of the $20^{th}$ century.

Study on economic performances of multi-span suspension bridges part 2: parametric study

  • Zhang, Li-Wen;Xiao, Ru-Cheng;Sun, Bin;Jiang, Yang;Zhang, Xue-Yi;Zhuang, Dong-Li;Zhou, Yun-Gang;Tu, Xue
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.287-305
    • /
    • 2013
  • Economic performances of consecutive multi-span suspension bridges are studied. The material amount and cost estimation formulas of the bridges have been derived in the part 1 of the study. A parametric study is carried out based on the formulas for investigating the different factors' effect on the bridge cost. The factors include the bridge sag, the bridge span, the bridge foundation and the environment condition, etc. Then, an economical layout of the bridges is proposed for different conditions. Lastly, a selection of suspension bridge types is discussed based on the economy of bridges.

Study of ground vibration induced by high-speed trains moving on multi-span bridges

  • Ju, S.H.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.277-290
    • /
    • 2016
  • This paper investigates the ground vibration induced by high-speed trains moving on multi-span continuous bridges. The dynamic impact factor of multi-span continuous bridges under trainloads was first determined in the parametric study, which shows that the dynamic impact factor will be large when the first bridge vertical natural frequency is equal to the trainload dominant frequencies, nV/D, where n is a positive integer, V is the train speed, and D is the train carriage interval. In addition, more continuous spans will produce smaller dynamic impact factors at this resonance condition. Based on the results of three-dimensional finite element analyses using the soil-structure interaction for realistic high-speed railway bridges, we suggest that the bridge span be set at 1.4 to 1.5 times the carriage interval for simply supported bridges. If not, the use of four or more-than-four-span continuous bridges is suggested to reduce the train-induced vibration. This study also indicates that the vibration in the train is major generated from the rail irregularities and that from the bridge deformation is not dominant.

Extension of a semi-analytical approach to determine natural frequencies and mode shapes of a multi-span orthotropic bridge deck

  • Rezaiguia, A.;Fisli, Y.;Ellagoune, S.;Laefer, D.F.;Ouelaa, N.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.71-87
    • /
    • 2012
  • This paper extends a single equation, semi-analytical approach for three-span bridges to multi-span ones for the rapid and precise determination of natural frequencies and natural mode shapes of an orthotropic, multi-span plate. This method can be used to study the dynamic interaction between bridges and vehicles. It is based on the modal superposition method taking into account intermodal coupling to determine natural frequencies and mode shapes of a bridge deck. In this paper, a four- and a five-span orthotropic roadway bridge deck are compared in the first 10 modes with a finite element method analysis using ANSYS software. This simplified implementation matches numerical modeling within 2% in all cases. This paper verifies that applicability of a single formula approach as a simpler alternative to finite element modeling.

Initial Equilibrium State Analysis of Cable Members for Preliminary Analysis of Multi-span Suspension Bridge under Dead Load (고정하중을 받는 다경간 현수교의 예비해석을 위한 케이블 부재의 초기평형상태 해석)

  • Choi, Dong-Ho;Na, Ho-Sung;Gwon, Sun-Gil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • This paper proposes a method to determine the initial equilibrium state of cable members for preliminary analysis of multi-span suspension bridge under dead load. The proposed method is simpler and more practical than the previous methods used in other studies. The proposed method can be applied to three-span or multi-span suspension bridges. To verify the proposed method, an three-span model as well as four-span models such as New Millenium Bridge in Korea and Yingwuzhou Bridge in China are analyzed. In the verification results, the initial coordinates and tensions of the members calculated by the proposed method are good agreement with those in the previous study for the three-span model and those in the design data of New Millenium Bridge. In addition, the proposed method gives the initial values to keep the initial configuration of Yingwuzhou Bridge.

Finite strip analysis of multi-span box girder bridges by using non-periodic B-spline interpolation

  • Choi, C.K.;Hong, H.S.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.3
    • /
    • pp.313-328
    • /
    • 2001
  • A multi-span bridge has the peak value of resultant girder moment or membrane stress at the interior support. In this paper, the spline finite strip method (FSM) is modified to obtain the more appropriate solution at the interior support where the peak values of solution exist. The modification has been achieved by expressing the shape function with non-periodic B-splines which have multiple knots at the boundary. The modified B-splines have the useful feature for interpolating the curve with sudden change in curvature. Moreover, the modified spline FSM is very efficient in analyzing multi-span box girder bridges, since a bridge can be modeled by an assembly of strips extended along the entire bridge length. Numerical examples of the bridge analysis have been performed to verify the efficiency and accuracy of the new spline FSM.

Influence of structural system measures on the dynamic characteristics of a multi-span cable-stayed bridge

  • Geng, Fangfang;Ding, Youliang;Xie, Hongen;Song, Jianyong;Li, Wanheng
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.51-73
    • /
    • 2014
  • A three-dimensional finite element model for the Jiashao Bridge, the longest multi-span cable-stayed bridge in the world, is established using the commercial software package ANSYS. Dynamic characteristics of the bridge are analyzed and the effects of structural system measures including the rigid hinge, auxiliary piers and longitudinal constraints between the girders and side towers on the dynamic properties including modal frequency, mode shape and effective mass are studied by referring to the Jiashao Bridge. The analysis results reveal that: (i) the installation of the rigid hinge significantly reduces the modal frequency of the first symmetric lateral bending mode of bridge deck. Moreover, the rigid hinge significantly changes the mode shape and effective mass of the first symmetric torsional mode of bridge deck; (ii) the layout of the auxiliary piers in the side-spans has a limited effect on changing the modal frequencies, mode shapes and effective masses of global vibration modes; (iii) the employment of the longitudinal constraints significantly increases the modal frequencies of the vertical bending modes and lateral bending modes of bridge deck and have significant effects on changing the mode shapes of vertical bending modes and lateral bending modes of bridge deck. Moreover, the effective mass of the first anti-symmetric vertical bending of bridge deck in the longitudinal direction of the fully floating system is significantly larger than that of the partially constrained system and fully constrained system. The results obtained indicate that the structural system measures of the multi-span cable-stayed bridge have a great effect on the dynamic properties, which deserves special attention for seismic design and wind-resistant design of the multi-span cable-stayed bridge.

Study of Monitering and Analysis Technology for Long Span Bridge Using Multi-GPS (멀티GPS에 의한 장대교량 모니터링 및 분석기술)

  • Choi, Byoung-Gil;Na, Young-Woo;Kim, Young-Gon;Kim, Tae-Hoon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.195-196
    • /
    • 2010
  • This study aims to methodology a system which is able to monitoring and analysis of long span bridge in real time using multi GPS. Through setting up many GPS at the important points of long span bridge and measuring displacement in real time, over all 3D configuration of bridge could be analyzed. Behavior analyzing system developed in this study is able to digitize and visualize the overall and points displacement of bridge and deal with events actively. Also it is able to calculate statistical data related to analyze behavior through the constricting database of measuring data.

  • PDF

Equivalent Suspension Bridge Model for Tower Design of Multi-span Suspension Bridges (다경간 현수교 주탑 설계를 위한 등가 현수교 모델)

  • Choi, Dong-Ho;Na, Ho-Sung;Yi, Ji-Yop;Gwon, Sun-Gil
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.669-677
    • /
    • 2011
  • The multi-span suspension bridge generally has more than three towers and two main spans. To economically and effectively design a multi-span suspension bridge, the proper stiffness ratio of the center tower to the side tower must be determined. This study was conducted to propose a method of figuring out briefly the structural behavior of the towers in a multi-span suspension bridge. In the equivalent suspension bridge model, the main cable of the multi-span suspension bridge is idealized as an equivalent cable spring, and the external loads of horizontal and vertical forces that were calculated using the tensile forces of the main cable were applied on top of the towers. The equilibrium equations of the equivalent multi-span suspension bridge model were derived and the equations were solved via nonlinear analysis. To verify the proposed method, a sample four-span suspension bridge with a main span length of 3,000 m was analyzed using thefinite element method. The displacements and moment reactions of each tower in the proposed method were compared with the FEM analysis results. Consequently, the results of the analysis of the equivalent suspension bridge model tended to be consistent with the results of the FEM analysis.

Study on midtower longitudinal stiffness of three-tower four-span suspension bridges with steel truss girders

  • Cheng, Jin;Xu, Hang;Xu, Mingsai
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.641-649
    • /
    • 2020
  • The determination of midtower longitudinal stiffness has become an essential component in the preliminary design of multi-tower suspension bridges. For a specific multi-tower suspension bridge, the midtower longitudinal stiffness must be controlled within a certain range to meet the requirements of sliding resistance coefficient and deflection-to-span ratio. This study presents a numerical method to divide different types of midtower and determine rational range of longitudinal stiffness for rigid midtower. In this method, influence curves of midtower longitudinal stiffness on sliding resistance coefficient and maximum vertical deflection-to-span ratio are first obtained from the finite element analysis. Then, different types of midtower are divided based on the regression analysis of influence curves. Finally, rational range for longitudinal stiffness of rigid midtower is derived. The Oujiang River North Estuary Bridge which is a three-tower four-span suspension bridge with two main spans of 800m under construction in China is selected as the subject of this study. This will be the first three-tower four-span suspension bridge with steel truss girders and concrete midtower in the world. The proposed method provides an effective and feasible tool for engineers to design midtower of multi-tower suspension bridges.