• Title/Summary/Keyword: multi-sensing data integration

Search Result 21, Processing Time 0.025 seconds

Integration of Multi-spectral Remote Sensing Images and GIS Thematic Data for Supervised Land Cover Classification

  • Jang Dong-Ho;Chung Chang-Jo F
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.315-327
    • /
    • 2004
  • Nowadays, interests in land cover classification using not only multi-sensor images but also thematic GIS information are increasing. Often, although useful GIS information for the classification is available, the traditional MLE (maximum likelihood estimation techniques) does not allow us to use the information, due to the fact that it cannot handle the GIS data properly. This paper propose two extended MLE algorithms that can integrate both remote sensing images and GIS thematic data for land-cover classification. They include modified MLE and Bayesian predictive likelihood estimation technique (BPLE) techniques that can handle both categorical GIS thematic data and remote sensing images in an integrated manner. The proposed algorithms were evaluated through supervised land-cover classification with Landsat ETM+ images and an existing land-use map in the Gongju area, Korea. As a result, the proposed method showed considerable improvements in classification accuracy, when compared with other multi-spectral classification techniques. The integration of remote sensing images and the land-use map showed that overall accuracy indicated an improvement in classification accuracy of 10.8% when using MLE, and 9.6% for the BPLE. The case study also showed that the proposed algorithms enable the extraction of the area with land-cover change. In conclusion, land cover classification results produced through the integration of various GIS spatial data and multi-spectral images, will be useful to involve complementary data to make more accurate decisions.

Integration of ERS-2 SAR and IRS-1 D LISS-III Image Data for Improved Coastal Wetland Mapping of southern India

  • Shanmugam, P.;Ahn, Yu-Hwan;Sanjeevi, S.;Manjunath, A.S.
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.351-361
    • /
    • 2003
  • As the launches of a series of remote sensing satellites, there are various multiresolution and multi-spectral images available nowadays. This diversity in remotely sensed image data has created a need to be able to integrate data from different sources. The C-band imaging radar of ERS-2 due to its high sensitivity to coastal wetlands holds tremendous potential in mapping and monitoring coastal wetland features. This paper investigates the advantages of using ERS-2 SAR data combined with IRS-ID LISS-3 data for mapping complex coastal wetland features of Tamil Nadu, southern India. We present a methodology in this paper that highlights the mapping potential of different combinations of filtering and integration techniques. The methodology adopted here consists of three major steps as following: (i) speckle noise reduction by comparative performance of different filtering algorithms, (ii) geometric rectification and coregistration, and (iii) application of different integration techniques. The results obtained from the analysis of optical and microwave image data have proved their potential use in improving interpretability of different coastal wetland features of southern India. Based visual and statistical analyzes, this study suggests that brovey transform will perform well in terms of preserving spatial and spectral content of the original image data. It was also realized that speckle filtering is very important before fusing optical and microwave data for mapping coastal mangrove wetland ecosystem.

Quantitative Comparison of Probabilistic Multi-source Spatial Data Integration Models for Landslide Hazard Assessment

  • Park No-Wook;Chi Kwang-Hoon;Chung Chang-Jo F.;Kwon Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.622-625
    • /
    • 2004
  • This paper presents multi-source spatial data integration models based on probability theory for landslide hazard assessment. Four probabilistic models such as empirical likelihood ratio estimation, logistic regression, generalized additive and predictive discriminant models are proposed and applied. The models proposed here are theoretically based on statistical relationships between landslide occurrences and input spatial data sets. Those models especially have the advantage of direct use of continuous data without any information loss. A case study from the Gangneung area, Korea was carried out to quantitatively assess those four models and to discuss operational issues.

  • PDF

A Survey on the Mobile Crowdsensing System life cycle: Task Allocation, Data Collection, and Data Aggregation

  • Xia Zhuoyue;Azween Abdullah;S.H. Kok
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.31-48
    • /
    • 2023
  • The popularization of smart devices and subsequent optimization of their sensing capacity has resulted in a novel mobile crowdsensing (MCS) pattern, which employs smart devices as sensing nodes by recruiting users to develop a sensing network for multiple-task performance. This technique has garnered much scholarly interest in terms of sensing range, cost, and integration. The MCS is prevalent in various fields, including environmental monitoring, noise monitoring, and road monitoring. A complete MCS life cycle entails task allocation, data collection, and data aggregation. Regardless, specific drawbacks remain unresolved in this study despite extensive research on this life cycle. This article mainly summarizes single-task, multi-task allocation, and space-time multi-task allocation at the task allocation stage. Meanwhile, the quality, safety, and efficiency of data collection are discussed at the data collection stage. Edge computing, which provides a novel development idea to derive data from the MCS system, is also highlighted. Furthermore, data aggregation security and quality are summarized at the data aggregation stage. The novel development of multi-modal data aggregation is also outlined following the diversity of data obtained from MCS. Overall, this article summarizes the three aspects of the MCS life cycle, analyzes the issues underlying this study, and offers developmental directions for future scholars' reference.

Application and Development of Integration Technique to Generate Land-cover and Soil Moisture Map Using High Resolution Optical and SAR images

  • Kim Ji-Eun;Park Sang-Eun;Kim Duk-jin;Kim Jun-su;Moon Wooil M.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.497-500
    • /
    • 2005
  • Research and development of remote sensing technique is necessary so that more accurate and extensive information may be obtained. To achieve this goal, the synthesized technique which integrates the high resolution optic and SAR image, and topographical information was examined to investigate the quantitative/qualitative characteristics of the Earth's surface environment. For this purpose, high-precision DEMs of Jeju-Island was generated and data fusion algorithm was developed in order to integrate the multi-spectral optic and polarimetric SAR image. Three dimensional land-cover and two dimensional soil moisture maps were generated conclusively so as to investigate the Earth's surface environments and extract the geophysical parameters.

  • PDF

Downscaling of Thematic Maps Based on Remote Sensing Data using Multi-scale Geostatistics (다중 스케일 지구통계학을 이용한 원격탐사 자료 기반 주제도의 다운스케일링)

  • Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • It is necessary to develop an integration model which can account for various data acquired at different measurement scales in environmental thematic mapping with high-resolution ground survey data and relatively low-resolution remote sensing data. This paper presents and applies a multi-scale geostatistical methodology for downscaling of thematic maps generated from lowresolution remote sensing data. This methodology extends a traditional ordinary kriging system to a block kriging system which can account for both ground data and remote sensing data which can be regarded as point and block data, respectively. In addition, stochastic simulation based on block kriging is also applied to describe spatial uncertainty attached to the downscaling. Two downscaling experiments including SRTM DEM and MODIS Leaf Area Index (LAI) products were carried out to illustrate the applicability of the geostatistical methodology. Through the experiments, multi-scale geostatistics based on block kriging successfully generated relatively high-resolution thematic maps with reliable accuracy. Especially, it is expected that multiple realizations generated from simulation would be effectively used as input data for investigating the effects of uncertain input data on GIS model outputs.

MULTI-SENSOR INTEGRATION SYSTEM FOR FOREST FIRE PREVENTION

  • Kim Eun Hee;Chi Jeong Hee;Shon Ho Sun;Jung Doo Young;Lee Chung Ho;Ryu Keun Ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.450-453
    • /
    • 2005
  • A forest fire occurs mainly as natural factor such as wind, temperature or human factor such as light. Recently, the most of forest fire prevention is prediction or prevision against forest fire by using remote sensing technology. However in order to forest fire prevention, the remote sensing has many limitations such as high cost and advanced technologies and so on. Therefore, we need to multisensor integration system that utilize not only remote sensing but also in-situ sensing in order to reduce large damage of forest fire though analysis of happen cause and prediction routing of occurred forest fire. In this paper we propose a multisensor integration system that offers prediction information of factors and route of forest fire by integrates collected data from remote sensor and in-situ sensor for forest fire prevention. The proposed system is based on wireless sensor network for collect observed data from various sensors. The proposed system not only offers great quality information because firstly, raw data level fuse different format of collected data from remote and in-situ sensor but also accomplish information level fusion based on result of first stage. Offered information from our system can help early prevention of factor and early prevision against occurred forest fire which transfer to SMS service or alert service into monitoring interface of administrator.

  • PDF

3-D Hetero-Integration Technologies for Multifunctional Convergence Systems

  • Lee, Kang-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.11-19
    • /
    • 2015
  • Since CMOS device scaling has stalled, three-dimensional (3-D) integration allows extending Moore's law to ever high density, higher functionality, higher performance, and more diversed materials and devices to be integrated with lower cost. 3-D integration has many benefits such as increased multi-functionality, increased performance, increased data bandwidth, reduced power, small form factor, reduced packaging volume, because it vertically stacks multiple materials, technologies, and functional components such as processor, memory, sensors, logic, analog, and power ICs into one stacked chip. Anticipated applications start with memory, handheld devices, and high-performance computers and especially extend to multifunctional convengence systems such as cloud networking for internet of things, exascale computing for big data server, electrical vehicle system for future automotive, radioactivity safety system, energy harvesting system and, wireless implantable medical system by flexible heterogeneous integrations involving CMOS, MEMS, sensors and photonic circuits. However, heterogeneous integration of different functional devices has many technical challenges owing to various types of size, thickness, and substrate of different functional devices, because they were fabricated by different technologies. This paper describes new 3-D heterogeneous integration technologies of chip self-assembling stacking and 3-D heterogeneous opto-electronics integration, backside TSV fabrication developed by Tohoku University for multifunctional convergence systems. The paper introduce a high speed sensing, highly parallel processing image sensor system comprising a 3-D stacked image sensor with extremely fast signal sensing and processing speed and a 3-D stacked microprocessor with a self-test and self-repair function for autonomous driving assist fabricated by 3-D heterogeneous integration technologies.

Integration of Kriging Algorithm and Remote Sensing Data and Uncertainty Analysis for Environmental Thematic Mapping: A Case Study of Sediment Grain Size Mapping (지표환경 주제도 작성을 위한 크리깅 기법과 원격탐사 자료의 통합 및 불확실성 분석 -입도분포지도 사례 연구-)

  • Park, No-Wook;Jang, Dong-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.3
    • /
    • pp.395-409
    • /
    • 2009
  • The objective of this paper is to illustrate that kriging can provide an effective framework both for integrating remote sensing data and for uncertainty modeling through a case study of sediment grain size mapping with remote sensing data. Landsat TM data which show reasonable relationships with grain size values are used as secondary information for sediment grain size mapping near the eastern part of Anmyeondo and Cheonsuman bay. The case study results showed that uncertainty attached to prediction at unsampled locations was significantly reduced by integrating remote sensing data through the analysis of conditional variance from conditional cumulative distribution functions. It is expected that the kriging-based approach presented in this paper would be efficient integration and analysis methodologies for any environmental thematic mapping using secondary information as well as sediment grain size mapping.

Analysis of the MSC(Multi-Spectral Camera) Operational Parameters

  • Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • The MSC is a payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a GSD(Ground Sample Distance) of 1 m over the entire FOV(Field Of View) at altitude 685 km. The instrument is designed to haute an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The MSC instrument has one channel for panchromatic imaging and four channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI(Time Belayed Integration) CCD(Charge Coupled Device) FPA(Focal Plane Assembly). The MSC hardware consists of three subsystem, EOS(Electro Optic camera Subsystem), PMU(Payload Management Unit) and PDTS(Payload Data Transmission Subsystem) and each subsystems are currently under development and will be integrated and verified through functional and space environment tests. Final verified MSC will be delivered to spacecraft bus for AIT(Assembly, Integration and Test) and then COMSAT-2 satellite will be launched after verification process through IST(Integrated Satellite Test). In this paper, the introduction of MSC, the configuration of MSC electronics including electrical interlace and design of CEU(Camera Electronic Unit) in EOS are described. MSC Operation parameters induced from the operation concept are discussed and analyzed to find the influence of system for on-orbit operation in future.