• Title/Summary/Keyword: multi-scale finite element model

Search Result 63, Processing Time 0.023 seconds

Coupled Analysis with Digimat for Realizing the Mechanical Behavior of Glass Fiber Reinforced Plastics (유리섬유 강화 플라스틱의 역학적 거동 구현을 위한 Digimat와의 연성해석 연구)

  • Kim, Young-Man;Kim, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.349-357
    • /
    • 2019
  • Finite element method (FEM) is utilized in the development of products to realistically analyze and predict the mechanical behavior of materials in various fields. However, the approach based on the numerical analysis of glass fiber reinforced plastic (GFRP) composites, for which the fiber orientation and strain rate affect the mechanical properties, has proven to be challenging. The purpose of this study is to define and evaluate the mechanical properties of glass fiber reinforced plastic composites using the numerical analysis models of Digimat, a linear, nonlinear multi-scale modeling program for various composite materials such as polymers, rubber, metal, etc. In addition, the aim is to predict the behavior of realistic polymeric composites. In this regard, the tensile properties according to the fiber orientation and strain rate of polybutylene terephthalate (PBT) with short fiber weight fractions of 30wt% among various polymers were investigated using references. Information on the fiber orientation was calculated based on injection analysis using Moldflow software, and was utilized in the finite element model for tensile specimens via a mapping process. LS-Dyna, an explicit commercial finite element code, was used for coupled analysis using Digimat to study the tensile properties of composites according to the fiber orientation and strain rate of glass fibers. In addition, the drawbacks and advantages of LS-DYNA's various anisotropic material models were compared and evaluated for the analysis of glass fiber reinforced plastic composites.

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.

Flutter analysis of Stonecutters Bridge

  • Hui, Michael C.H.;Ding, Q.S.;Xu, Y.L.
    • Wind and Structures
    • /
    • v.9 no.2
    • /
    • pp.125-146
    • /
    • 2006
  • Stonecutters Bridge of Hong Kong is a cable-stayed bridge with two single-column pylons each 298 m high and an aerodynamic twin deck. The total length of the bridge is 1596 m with a main span of 1018 m. The top 118 m of the tower will comprise structural steel and concrete composite while the bottom part will be of reinforced concrete. The bridge deck at the central span will be of steel whilst the side spans will be of concrete. Stonecutters Bridge has adopted a twin-girder deck design with a wide clear separation of 14.3 m between the two longitudinal girders. Although a number of studies have been conducted to investigate the aerodynamic performance of twin-girder deck, the actual real life application of this type of deck is extremely limited. This therefore triggered the need for conducting the present studies, the main objective of which is to investigate the performance of Stonecutters Bridge against flutter at its in-service stage as well as during construction. Based on the flutter derivatives obtained from the 1:80 scale rigid section model experiment, flutter analysis was carried out using 3-D finite element based single parameter searching method developed by the second author of this paper. A total of 6 finite element models of the bridge covering the in-service stage as well as 5 construction stages were established. The dynamic characteristics of the bridge associated with these stages were computed and applied in the analyses. Apart from the critical wind speeds for the onset of flutter, the dominant modes of vibration participating in the flutter vibration were also identified. The results indicate that the bridge will be stable against flutter at its in-service stage as well as during construction at wind speeds much higher than the verification wind speed of 95 m/s (1-minute mean).

Predicting Long-Term Deformation of Road Foundations under Repeated Traffic Loadings (반복 교통하중에 의한 도로지반의 장기변형 예측)

  • Park, Seong-Wan;An, Dong Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.505-512
    • /
    • 2010
  • Generally, the repeated traffic loading condition should be considered to predict the long-term deformation on road foundations or foundation systems. However, it is not easy to estimate long-term deformation on multi-layered system like roads and railways. For more quantitative analysis, mechanistic-empirical approach requires proper analytical tool, material's model, and material properties of foundation geomaterials under both traffic and environmental loadings. In this study, therefore, laboratory data from the long-term repeated load triaxial tests were used to predict accumulated deformation on pavement foundations and the results were analyzed based on the nonlinear models and stress state considered. All these results are presented and verified on laboratory based scale using the finite element analysis with the deformation characteristics of foundation geomaterials at various stress states.

Performance Modeling of Single-Chamber Micro SOFC (단실형 마이크로 고체 산화물 연료전지의 작동특성 전산모사)

  • Cha, Jeong-Hwa;Chung, Chan-Yeup;Chung, Yong-Chae;Kim, Joosun;Lee, Jongho;Lee, Hae-Weon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.854-859
    • /
    • 2005
  • Performance of micro scale intermediate temperature solid oxide fuel cell system has been successfully evaluated by computer simulation based on macro modeling. Two systems were studied in this work. The one is designed that the ceria-based electrolyte placed between composite electrodes and the other is designed that electrodes alternately placed on the electrolyte. The injected gas was composed of hydrogen and air. The polarization curve was obtained through a series of calculations for ohmic loss, activation loss and concentration loss. The calculation of each loss was based on the solving of mathematical model of multi physical-phenomena such as ion conduction, fluid dynamics and diffusion and convection by Finite Element Method (FEM). The performance characteristics of SOFC were quantitatively investigated for various structural parameters such as distance between electrodes and thickness of electrolyte.

Influence of Adjacent Structures on Surface-Wave Dispersion Characteristics and 2-D Resistivity Structure (표면파 분산특성과 전기비저항 분포특성에 대한 인접구조물의 영향)

  • Joh, Sung-Ho;Kim, Bong-Chan;Cho, Mi-Ra;Kim, Suhk-Chol;Youn, Dae-Hee;Hong, Jae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1318-1327
    • /
    • 2008
  • Geotechnical sites in urban areas may have embedded structures such as utility lines and underground concrete structures, which cause difficulties in site investigation. This study is a preliminary research to establish knowledge base for developing an optimal technique for site investigation in urban areas. Surface-wave method and resistivity survey, which are frequently adopted for non-destructive site-investigation for geotechnical sites, were investigated to characterize effects of adjacent structures. In case of surface wave method, patterns of wave propagation were investigated for typical sets of multi-layered geotechnical profiles by numerical simulation based on forward modeling theory and field experiments for small-size model tests and real-scale tests in the field. In case of resistivity survey, 3-D finite element analyses and field tests were performed to investigate effects of adjacent concrete structures. These theoretical and experimental researches for surface-wave method and resistivity survey resulted in establishing physical criteria to cause interference of adjacent structures in site investigation at urban areas.

  • PDF

Structural Analysis of Multi-Linked High Place Working Vehicle (다관절 고소작업 차량의 구조해석)

  • Bang, Seung-Ok;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.617-622
    • /
    • 2011
  • In this paper, the structural analysis is carried out with the vertical loading condition on the platform of the high place working vehicle. The model of analysis is reduced on the scale of 1:10. Deformation and stress distribution of boom are analyzed with the variation of angle at boom position and the vulnerable parts are checked. Analysis result shows that most stress is concentrated at the connection of the boom. Through this analysis result, the safety on this vehicle can be improved by making up for the relatively weak connection parts as compared with other parts.

A Study on the Fatigue Analysis of Glass Fiber Reinforced Plastics with Linear and Nonlinear Multi-Scale Material Modeling (선형과 비선형 다중 스케일 재료 모델링을 활용한 유리섬유 강화 플라스틱의 피로해석 연구)

  • Kim, Young-Man;Kim, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.81-93
    • /
    • 2020
  • The fatigue characteristics of glass fiber reinforced plastic (GFRP) composites were studied under repeated loads using the finite element method (FEM). To realize the material characteristics of GFRP composites, Digimat, a mean-field homogenization tool, was employed. Additionally, the micro-structures and material models of GFRP composites were defined with it to predict the fatigue behavior of composites more realistically. Specifically, the fatigue characteristics of polybutylene terephthalate with short fiber fractions of 30wt% were investigated with respect to fiber orientation, stress ratio, and thickness. The injection analysis was conducted using Moldflow software to obtain the information on fiber orientations. It was mapped over FEM concerned with fatigue specimens. LS-DYNA, a typical finite element commercial software, was used in the coupled analysis of Digimat to calculate the stress amplitude of composites. FEMFAT software consisting of various numerical material models was used to predict the fatigue life. The results of coupled analysis of linear and nonlinear material models of Digimat were analyzed to identify the fatigue characteristics of GFRP composites using FEMFAT. Neuber's rule was applied to the linear material model to analyze the fatigue behavior in LCF regimen. Additionally, to evaluate the morphological and mechanical structure of GFRP composites, the coupled and fatigue analysis were conducted in terms of thickness.

Effect of the Member Joint on Structural Performance of an Arch-type Multi-span Greenhouse: A Full-scale Experimental and Numerical Study (부재 접합부가 아치형 연동온실의 구조 성능에 미치는 영향: 실대형 실험적 및 해석적 연구)

  • Choi, Man-kwon;Ryu, Hee-ryong;Cho, Myeong-whan;Yu, In-ho
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.402-410
    • /
    • 2017
  • The effect of the steel pipe member joint on the design performance of a plastic multi-span greenhouse was analysed through the comparing full-scale experiment and numerical analysis. The design performance of the greenhouse is generally evaluated through numerical analysis, but it is rare to consider the characteristics of the connections or joints of the members. In this study, the effect of the column-gutter beam-rafter-wind break wall joint on the design performance of the whole structure of a plastic multi-span greenhouse was analysed. The numerical results with assuming that the member joint are rigid condition were compared with the full-scale load test results using member joints used in the field. The stiffness of the entire structure was compared using the load-displacement relationship and the change of the load sharing ratio that the main members such as column, rafters, and wind break wall was analysed. The results of the load test were about 40% larger than the numerical result and the member stress was more than twice as large as those of the loaded columns. In order to increase the reliability of the design performance of the greenhouse, it is necessary to develop a numerical analysis model which can consider the characteristics of various joints.

Wireless operational modal analysis of a multi-span prestressed concrete bridge for structural identification

  • Whelan, Matthew J.;Gangone, Michael V.;Janoyan, Kerop D.;Hoult, Neil A.;Middleton, Campbell R.;Soga, Kenichi
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.579-593
    • /
    • 2010
  • Low-power radio frequency (RF) chip transceiver technology and the associated structural health monitoring platforms have matured recently to enable high-rate, lossless transmission of measurement data across large-scale sensor networks. The intrinsic value of these advanced capabilities is the allowance for high-quality, rapid operational modal analysis of in-service structures using distributed accelerometers to experimentally characterize the dynamic response. From the analysis afforded through these dynamic data sets, structural identification techniques can then be utilized to develop a well calibrated finite element (FE) model of the structure for baseline development, extended analytical structural evaluation, and load response assessment. This paper presents a case study in which operational modal analysis is performed on a three-span prestressed reinforced concrete bridge using a wireless sensor network. The low-power wireless platform deployed supported a high-rate, lossless transmission protocol enabling real-time remote acquisition of the vibration response as recorded by twenty-nine accelerometers at a 256 Sps sampling rate. Several instrumentation layouts were utilized to assess the global multi-span response using a stationary sensor array as well as the spatially refined response of a single span using roving sensors and reference-based techniques. Subsequent structural identification using FE modeling and iterative updating through comparison with the experimental analysis is then documented to demonstrate the inherent value in dynamic response measurement across structural systems using high-rate wireless sensor networks.