• Title/Summary/Keyword: multi-resonance

Search Result 421, Processing Time 0.025 seconds

Backbone assignment and structural analysis of anti-CRISPR AcrIF7 from Pseudomonas aeruginosa prophages

  • Kim, Iktae;Suh, Jeong-Yong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.25 no.3
    • /
    • pp.39-44
    • /
    • 2021
  • The CRISPR-Cas system provides adaptive immunity for bacteria and archaea against invading phages and foreign plasmids. In the Class 1 CRISPR-Cas system, multi-subunit Cas proteins assemble with crRNA to bind to DNA targets. To disarm the bacterial defense system, bacteriophages evolved anti-CRISPR (Acr) proteins that actively inhibit the host CRISPR-Cas function. Here we report the backbone resonance assignments of AcrIF7 protein that inhibits the type I-F CRISPR-Cas system of Pseudomonas aeruginosa using triple-resonance nuclear magnetic resonance spectroscopy. We employed various computational methods to predict the structure and binding interface of AcrIF7, and assessed the model with experimental data. AcrIF7 binds to Cas8f protein via flexible loop regions to inhibit target DNA binding, suggesting that conformational heterogeneity is important for the Cas-Acr interaction.

Analysis of GMR Phenomenon by Asymmetric Multi-layered Dielectric Gratings (비대칭 다층 유전체 격자구조에 의한 GMR 현상의 분석)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.209-214
    • /
    • 2017
  • A plane-wave incident upon asymmetric multi-layered dielectric grating as well as symmetric grating structure generates space harmonics. Selected space harmonics among those harmonics can undergo strong resonance scattering variations known as GMR(guided-mode resonance). In this paper, to clarify these effects, the field propagation and dispersion curve inside the grating region are analyzed by using a rigorous equivalent transmission-line theory(RETT) based on eigenvalue problem. The results show that, at the peak of a scattering resonance, the reflected mode is almost identical to a leaky wave that can be supported by the grating structure. Thus, it confirms to be occurred GMR effect associated with the free-resonant character of leaky waves at asymmetric multi-layered dielectric gratings. Quantitative simulation results illustrating the behavior of typical gratings are given, and the special case of normal incidence is discussed for TE and TM modes.

Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure (다중접착구조물의 초음파 공진 신호 분석)

  • Kim, Dong-Ryun;Kim, Jae-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.401-409
    • /
    • 2012
  • Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

A Study on Resonance Durability Analysis of Vehicle Suspension System (차량 현가 시스템의 공진내구해석에 대한 연구)

  • 이상범;한우섭;임홍재
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.512-518
    • /
    • 2003
  • In this paper, resonance durability analysis is performed for the fatigue life assessment considering vibration effect of a vehicle system. In the resonance durability analysis, the frequency response and the dynamic load on frequency domain are used. Multi-body dynamic analysis, finite element analysis, and fatigue life prediction method are applied for the virtual durability assessment. To obtain the frequency response and the dynamic load history, the computer simulations running over typical pothole and Belgian road are carried out by utilizing vehicle dynamic model. The durability estimations on the rear suspension system of the passenger car are performed by using the resonance durability analysis technique and compared with the quasi-static durability analysis. The study shows that the fatigue life considering resonant frequency of vehicle system can be effectively estimated in early design stage.

CPW-Fed Arbitrary Frequency-Switchable Antenna Using CRLH Transmission Line

  • Lim, Inseop;Lim, Sungjoon
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.151-154
    • /
    • 2014
  • A novel frequency-switchable antenna that uses PIN diodes and a composite right- and left-handed transmission line (CRLH TL) is proposed. The CRLH TL provides multi-order resonance, including a zeroth-order resonance (ZOR), and its shunt stub determines the ZOR frequency. Thus, the resonant frequency is arbitrarily chosen by lumped chip inductors on the shunt stub. Two prototypes are designed using different chip inductors while maintaining the antenna geometries. Antenna #1 can switch the resonant frequency from 1.8 GHz to 2.3 GHz. Antenna #2 can switch its resonance from 0.9 GHz to 2.3 GHz.

Mode Identification in the Design of Wideband Cylindrical Monopole Antenna

  • Chun, Joong-Chang;Kim, Sang-Youl;Jeung, Deuk-Soo
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.263-267
    • /
    • 2009
  • Cylindrical monopole antenna is one of most promising candidates for multi-band applications such as PCS, WLAN, DMB, and UWB wireless services. In this research, we demonstrate that there exist two types of current distributions according to the exciting frequency in a double band cylindrical monopole antenna, in which double resonance is achieved by adjusting the coupling structure of the antenna base. The operating modes of current distributions are identified from CST software simulations, the standing wave mode in a lower band and the traveling wave mode in a higher band. Also it is noticed that the mode behavior is quite similar to a helical antenna, a standing-wave (resonance) mode and a traveling-wave (non-resonance) mode according to the electrical dimensions of antenna. The effective ranges for operating modes and design formulas of the double band antenna are derived from simulation and measured results.

Active Nonlinear Vibration Absorber for a Nonlinear System with a Time Delay Acceleration Feedback under the Internal Resonance, Subharmonic, Superharmonic and Principal Parametric Resonance Conditions Simultaneously

  • Mohanty, S;Dwivedy, SK
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.9-15
    • /
    • 2019
  • In this paper, dynamic analysis of a nonlinear active vibration absorber is conducted with a time delay acceleration feedback to suppress the vibration of a nonlinear single degree of freedom primary system. The primary system consisting of linear and nonlinear cubic springs, mass, and damper is subjected to the multi-harmonic hard excitation with a parametric excitation. It is proposed to reduce the vibration of the primary system and the absorber by using a lead zirconate titanate (PZT) stack actuator in series with a spring in the absorber which configures as an active vibration absorber. The method of multiple scales (MMS) is used to obtain the approximate solution of the system under the internal resonance, subharmonic, superharmonic, and principal parametric resonance conditions simultaneously. Frequency and time responses of the system are investigated considering a delay in the feedback for the various parameters of the absorber configuration and controlling force.

A design study of a 4.7 T 85 mm low temperature superconductor magnet for a nuclear magnetic resonance spectrometer

  • Bae, Ryunjun;Lee, Jung Tae;Park, Jeonghwan;Choi, Kibum;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.24-29
    • /
    • 2022
  • One of the recent proposals with nuclear magnetic resonance (NMR) is a multi-bore NMR which consists of array of magnets which could present possibilities to quickly cope with pandemic virus by multiple inspection of virus samples. Low temperature superconductor (LTS) can be a candidate for mass production of the magnet due to its low price in fabrication as well as operation by applying the helium zero boil-off technology. However, training feature of LTS magnet still hinders the low cost operation due to multiple boil-offs during premature quenches. Thus in this paper, LTS magnet with low mechanical stress is designed targeting the "training-free" LTS magnet for mass production of magnet array for multi-bore NMR. A thorough process of an LTS magnet design is conducted, including the analyses as the followings: electromagnetics, mechanical stress, cryogenics, stability, and protection. The magnet specification was set to 4.7 T in a winding bore of 85 mm, corresponding to the MR frequency of 200 MHz. The stress level is tolerable with respect to the wire yield strength and epoxy crack where mechanical disturbance is less than the minimum quench energy.

DEMO: Deep MR Parametric Mapping with Unsupervised Multi-Tasking Framework

  • Cheng, Jing;Liu, Yuanyuan;Zhu, Yanjie;Liang, Dong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.300-312
    • /
    • 2021
  • Compressed sensing (CS) has been investigated in magnetic resonance (MR) parametric mapping to reduce scan time. However, the relatively long reconstruction time restricts its widespread applications in the clinic. Recently, deep learning-based methods have shown great potential in accelerating reconstruction time and improving imaging quality in fast MR imaging, although their adaptation to parametric mapping is still in an early stage. In this paper, we proposed a novel deep learning-based framework DEMO for fast and robust MR parametric mapping. Different from current deep learning-based methods, DEMO trains the network in an unsupervised way, which is more practical given that it is difficult to acquire large fully sampled training data of parametric-weighted images. Specifically, a CS-based loss function is used in DEMO to avoid the necessity of using fully sampled k-space data as the label, thus making it an unsupervised learning approach. DEMO reconstructs parametric weighted images and generates a parametric map simultaneously by unrolling an interaction approach in conventional fast MR parametric mapping, which enables multi-tasking learning. Experimental results showed promising performance of the proposed DEMO framework in quantitative MR T1ρ mapping.