• Title/Summary/Keyword: multi-resonance

Search Result 421, Processing Time 0.038 seconds

Analysis of Resonance Efficiency According to Length and Entrance Depth of Channel Resonance Part of Multi-Resonance Wave Energy Converter (다중공진 파력발전체의 수로 공진부 길이와 입구 깊이별 공진 효율 분석)

  • Sukjin Ahn;Changhoon Lee;Hyen-cheol Jung;Hyukjin Choi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.4
    • /
    • pp.138-148
    • /
    • 2024
  • Multi-resonance wave energy converter can generate efficient power generation by complexly utilizing the resonance phenomenon of waves even when waves propagate normally. As the wave is amplified by resonance, the power generation efficiency of the multi-resonance wave energy converter increases, and the shape of the resonance part needs to be optimized to maximize power generation efficiency. The multi-resonance wave energy converter amplifies waves in the seiche resonance part and the channel resonance part. In this study, CFD numerical experiments were performed under various conditions such as the length and location of the channel resonance part to analyze the sensitivity for each condition and derve the optimal shape of the channel resonance part.

SOLVABILITY OF MULTI-POINT BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS AT RESONANCE

  • Liu, Yuji;Liu, Xingyuan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.425-443
    • /
    • 2012
  • Sufficient conditions for the existence of at least one solution of a class of multi-point boundary value problems of the fractional differential equations at resonance are established. The main theorem generalizes and improves those ones in [Liu, B., Solvability of multi-point boundary value problems at resonance(II), Appl. Math. Comput., 136(2003)353-377], see Remark 2.3. An example is presented to illustrate the main results.

A Wide-band Multi-layer Antenna Design using Double Resonance (이중공진을 사용한 적층기판용 광대역 안테나 설계)

  • Lee, Kook-Joo;Zhang, Mei-Shan;Lee, Jung-Aun;Han, Myeong-Woo;Kim, Moon-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.431-434
    • /
    • 2011
  • In this paper, bandwidth enhanced design of dielectric resonator antenna fabricated in multi-layer substrate is introduced. The proposed dielectric resonator antenna is operating with fundamental TE101 mode and higher-order TM111 mode. Each resonance frequency is dependent on resonator dimensions. As increasing the height of radiating aperture, the higher-order TM111 mode resonance frequency approach the fundamental TE101 mode resonance frequency and the antenna bandwidth increase by double resonance. Three different aperture height size antennas that operated at 7GHz are fabricated in FR4 multi-layer substrate. Measured 10 dB matching bandwidth is 8 percent for single resonace antenna and 18 percent for double resonance antenna.

Transient Vibration Analysis of a Multi-packet Blade System Excited by Nozzle Jet Forces (노즐 분사력에 의해 가진되는 다중 패킷 블레이드계의 과도 진동 해석)

  • Lim, Ha-Seong;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.57-62
    • /
    • 2007
  • A modeling method for the modal and the transient vibration analysis of a multi-packet blade system excited by nozzle jet forces is presented in this paper. Blades are idealized as cantilever beams and the elastic structures like disc and shroud connecting blades are modeled as coupling stiffnesses. A modified Campbell diagram is proposed to identify true resonance frequencies of the multi-packet blade system. Different from the SAFE diagram that employs three dimensional space, the modified Campbell diagram proposed in this study employs a plane to find the true resonance frequencies. To verify the existence of true resonance frequencies, nozzle jet forces are modeled as periodic forces and transient vibration analysis were performed with the modeling method.

  • PDF

Transient Vibration Analysis of a Multi-packet Blade System Excited by Nozzle Jet Forces (노즐 분사력에 의해 가진되는 다중 패킷 블레이드계의 과도 진동 해석)

  • Lim, Ha-Seong;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.711-717
    • /
    • 2008
  • A modeling method for the modal and the transient vibration analysis of a multi-packet blade system excited by nozzle jet forces is presented in this paper. Blades are idealized as cantilever beams and the elastic structures like disc and shroud connecting blades are modeled as coupling stiffnesses. A modified Campbell diagram is proposed to identify true resonance frequencies of the multi-packet blade system. Different from the SAFE diagram that employs three dimensional space, the modified Campbell diagram Proposed in this study employs a plane to find the true resonance frequencies. To verify the existence of true resonance frequencies, nozzle jet forces are modeled as periodic forces and transient vibration analysis were performed with the modeling method.

Resonance Characteristic Improvement of ZnO-Based FBAR Devices Fabricated on Thermally Annealed Bragg Reflectors

  • Yim, Mun-Hyuk;Kim, Dong-Hyun;Linh Mai;Giwan Yoon
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.4
    • /
    • pp.199-204
    • /
    • 2003
  • In this paper, we present the thermal annealing effects of the W/$SiO_2$ multi-layer reflectors in ZnO-based FBAR devices with cobalt (Co) electrodes in comparison with those with aluminum (Al) electrodes. Various thermal annealing conditions have been implemented on the W/$SiO_2$ multi-layer reflectors formed on p-type (100) silicon substrates. The resonance characteristics could be significantly improved due to the thermal annealing and were observed to depend strongly on the annealing conditions applied to the reflectors. Particularly, the FBAR devices with the W/$SiO_2$ multi- layer reflectors annealed at $400^{\circ}C$/30min have shown superior resonance characteristics in terms of return loss and quality-factor (Q-factor). In addition, the use of Co electrodes has resulted in further improvement of the resonance characteristics as compared with the Al electrodes. As a result, the combined use of both the thermal annealing and Co electrodes seems very useful to more effectively improve the resonance characteristics of the FBAR devices with the W/$SiO_2$ multi-layer reflectors.

POSITIVE SOLUTIONS OF MULTI-POINT BOUNDARY VALUE PROBLEMS OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION AT RESONANCE

  • Yang, Aijun;Ge, Weigao
    • The Pure and Applied Mathematics
    • /
    • v.16 no.2
    • /
    • pp.213-225
    • /
    • 2009
  • This paper deals with the existence of positive solutions for a kind of multi-point nonlinear fractional differential boundary value problem at resonance. Our main approach is different from the ones existed and our main ingredient is the Leggett-Williams norm-type theorem for coincidences due to O'Regan and Zima. The most interesting point is the acquisition of positive solutions for fractional differential boundary value problem at resonance. And an example is constructed to show that our result here is valid.

  • PDF

A novel surface plasmon resonance sensor without using imaging devices (영상 소자를 사용하지 않는 새로운 표면 플라즈몬 공명 센서)

  • Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.347-351
    • /
    • 2006
  • A novel surface plasmon resonance sensor, which can measure 2-dimensional array of immobilized ligands without using imaging devices such as CCD, has been proposed. Regular surface plasmon resonance can be directly used due to the insertion of additional layers with different thickness, on which each ligands are immobilized. Surface plasmon resonance signals are separated depending on the thickness of additional layers. The possibility of multi-sensing capability of the proposed surface plasmon resonance sensor has been verified by the modeling that is based on Fresnel reflection model.

EXISTENCE OF n POSITIVE SOLUTIONS TO SECOND-ORDER MULTI-POINT BOUNDARY VALUE PROBLEM AT RESONANCE

  • Wang, Feng;Zhang, Fang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.815-827
    • /
    • 2012
  • The existence of $n$ positive solutions is established for second order multi-point boundary value problem at resonance where $n$ is an arbitrary natural number. The proof is based on a theory of fixed point index for A-proper semilinear operators defined on cones due to Cremins.

Effect of mass-spring-mass resonance in sound Insulation characteristic of multi-layered panels (다중판의 차음특성에 있어서 mass-spring-mass 공진효과)

  • 강현주;김재승;김상렬;엄재광;김봉기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.882-887
    • /
    • 2001
  • This paper deals with the effect of mass-spring-mass resonance that is a characteristics of the multi-layered panels in order to enhance sound insulation performance. From theoretical and experimental investigation, it is evident that tuning mass-spring-mass resonance by controlling elastic modulus of the core materials is very important to improve the STC value without increasing the weight of panels, resulting in enhancing STC value more than 10 dB.

  • PDF