• Title/Summary/Keyword: multi-radio multi-channel

Search Result 230, Processing Time 0.029 seconds

Downlink Radio Resource Allocation Algorithm for Supporting Heterogeneous Traffic Data in OFDM/SDMA-based Cellular System (OFDM/SDMA 기반 셀룰러 시스템에서 다양한 트래픽 데이터를 지원하기 위한 하향링크 자원할당 알고리즘)

  • Heo Joo;Park Sung-Ho;Chang Kyung-Hi;Lee Hee-Soo;Ahn Jae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.254-266
    • /
    • 2006
  • Recently, researches about downlink resource allocation algorithms applying SDMA to enhance the system throughput and cell coverage have begun. Most OFDM/SDMA based resource allocation algorithms have some limitations such that those only concentrate on maximizing the system throughput or can be applied in single cell environment. In this paper, we propose an OFDM/SDMA based downlink resource allocation algorithm which considers high layer QoS parameters suitable for the required data traffic and it also minimizes the system throughput loss and considers inter-cell interference from adjacent cells. so it can be adopted in multi-cell environment. We manifest the performance of the proposed algorithm in Ped A and SCME MIMO Channel Model.

An Efficient Packet Scheduling Scheme to support Real-Time Traffic in OFDMA Systems (OFDMA 시스템에서 실시간 트래픽 전송을 위한 효율적 스케쥴링 기법)

  • Park, Jeong-Sik;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.13-23
    • /
    • 2007
  • In this paper, a packet scheduling scheme that supports real-time traffic having multi-level delay constraints in OFDMA systems is proposed. The proposed scheme pursues to satisfy the delay constraint first, and then manage the residual radio resource in order to enhance the overall throughput. A parameters named tolerable delay time (TDT) is newly defined to deal with the differentiated behaviors of packet scheduling according to the delay constraint level. Assuming that the packets violating the delay constraint are discarded, the proposed scheme is evaluated in terms of the packet loss probability, throughput, channel utilization. It is then compared with existing schemes for real-time traffic support such as the Exponential Scheduling (EXP) scheme, the Modified Largest Weighted Delay First (M-LWDF) scheme, and the Round robin scheme. The numerical results show that the proposed scheduling scheme performs much better than the aforementioned scheduling schemes in terms of the packet loss probability, while slightly better in terms of throughput and channel utilization.

OPTICAL MULTI-CHANNEL INTENSITY INTERFEROMETRY - OR: HOW TO RESOLVE O-STARS IN THE MAGELLANIC CLOUDS

  • Trippe, Sascha;Kim, Jae-Young;Lee, Bangwon;Choi, Changsu;Oh, Junghwan;Lee, Taeseok;Yoon, Sung-Chul;Im, Myungshin;Park, Yong-Sun
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.235-253
    • /
    • 2014
  • Intensity interferometry, based on the Hanbury Brown-Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25 000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as $m_R{\approx}14$, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass-radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade-Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.

B1+ Homogenizaion over Whole Field of View in High Field MRI (고자장 MRI에서의 영상 영역에 대한 B1+ 균질성)

  • Kim, Hong-Joon;Son, Hyeok-Woo;Cho, Young-Ki;Yoo, Hyoung-Suk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.96-100
    • /
    • 2012
  • In high static field magnetic resonance imaging(MRI) systems, $B_0$ fields of 7 T and 9.4 T, the impressed RF field shows larger inhomogeneity than in clinical MRI systems with B0 fields of 1.5 T and 3.0 T. In multi-channel RF coils, the magnitude and phase of the input to each coil element can be controlled independently to reduce the non-uniformity of the impressed RF $B_1^+$ field. The convex optimization technique has been used to obtain the optimum excitation parameters with iterative solutions for homogeneity in a selected ROI(Region of Interest). To demonstrate the technique, the multichannel transmission line coil was modeled together with a human head phantom at 400 MHz for the 9.4 T MRI system and $B_1^+$ fields are obtained. In this paper, all the optimized $B_1^+$ in each isolated ROIs are combined to achieve significantly improved homogeneity over the entire field of view. The simulation results for 9.4 T MRI systems are discussed in detail.

Outage Probability and Throughput Management Using CoMP under the Coexistence of PS-LTE and LTE-R Networks (안전망과 철도망 공존환경에서 협력통신을 이용한 아웃티지 및 수율 관리)

  • Lim, WonHo;Jeong, HyoungChan;Ahmad, Ishtiaq;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.595-603
    • /
    • 2016
  • In the Republic of Korea, the LTE-based public safety (PS-LTE) network is being built for the 700 MHz frequency band. However, the same bands are also assigned to the LTE-based high-speed railway (LTE-R) network. Therefore, it is essential to utilize the co-channel interference management schemes for the coexistence of two LTE networks in order to increase the system throughput and to reduce the user outage probability. In this paper, we focus on the downlink (DL) system for the coexistence of PS-LTE and LTE-R networks by considering non radio access network (RAN) sharing and LTE-R RAN sharing by PS-LTE users (UEs) to analyze the UE throughput. Moreover, we also utilize the cooperative communications schemes, such as coordinated multipoint (CoMP) for the coexistence of PS-LTE and LTE-R networks in order to reduce the UE outage probability. We categorize the coexistence of PS-LTE and LTE-R networks into four different scenarios, and evaluate the performance of each scenario by the important performance indexes, such as UE average throughput and UE outage probability.

Jammer Suppression by Eigen Analysis in Multi-Carrier Radar (멀티캐리어 레이더에서 고유치 해석에 의한 재머 억제)

  • Jeon, Hyeon-Mu;Shin, Seong-Kwan;Chung, Yong-Seek;Chung, Won-Zoo;Kim, Jong-Mann;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1284-1291
    • /
    • 2014
  • For detection and parameter estimation, a multicarrier radar should discriminate a channel containing jamming signal and either leave it out or regenerate jammer suppressed target signal. To discriminate jamming channels, we use the angular spectrum of an eigenvector that embeds target echoes and jamming signals. We propose a criteria to discriminate the jammer channels and its basis through mathematical analysis. Moreover, we show some procedures to regenerate the jammer suppressed target echoes. Finally, the validity of the proposed method is demonstrated through simulation results showing improved performance in terms of direction of arrival(DOA) estimation.

Study of Efficient Energy Management for Ubiquitous Sensor Networks with Optimization of the RF power (전송전력 최적화를 통한 센서네트워크의 효율적인 에너지관리에 대한 연구)

  • Eom, Heung-Sik;Kim, Keon-Wook
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.3
    • /
    • pp.37-42
    • /
    • 2007
  • This paper reconsiders established power conservation models for ubiquitous sensor networks that use relay nodes instead of direct communication and proposes novel network power consumption model with consideration of the channel level and radio chip level simultaneously. We estimate the effect of minimum hop-count policy in terms of network power consumption through simulation of various situations for low power RF module CC2420. It is observed that maximum RF power and minimum hop-count results in lower energy consumption relatively. Also, in total network energy consumption, which is included re-transmission, minimum hop count policy presents decrease by 33.1% of energy consumption in compare with the conventional model.

Packet Interference and Aggregated Throughput of Bluetooth Piconets Using an Adaptive Frequency Hopping in Rician Fading Channels (라이시안 페이딩 채널에서 AFH알고리즘을 사용하는 블루투스 피코넷의 패킷 간섭과 통합 처리량 분석)

  • Kim, Seung-Yeon;Yang, Sung-Hyun;Lee, Hyong-Woo;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.469-476
    • /
    • 2008
  • In this paper we analyze the packet interference probability and the aggregated throughput of a WPAN in which a number of Bluetooth piconets share the ISM band with WLANS. Using an Adaptive Frequency Hopping algorithm, when the AFH is employed, the number of hops available to the Bluetooth piconets varies depending on the number of independent WLANs within the piconet's radio range. Using a packet collision model in a piconet cluster, we give an analysis of the packet interference probability and the aggregated throughput as a function of the available hops for the AFH algorithm. We also present an analytical model of packet interference with multi-path fading channel in a cluster of piconets. Through analysis, we obtain the packet collision probability and aggregated throughput assuming capture effect. Numerical examples are given to demonstrate the effect of various Parameters such as capture ratio, Rice factor and cluster size on the system performance.

An Adaptive Coverage Control Algorithm for Throughput Improvement in OFDMA-based Relay Systems (OFDMA 기반 Relay 시스템에서 Throughput 성능 향상을 위한 적응적 커버리지 조절 기법)

  • Hyun, Myung-Reun;Hong, Dae-Hyoung;Lim, Jae-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9B
    • /
    • pp.876-882
    • /
    • 2009
  • In this paper, we propose a sub-cell coverage control algorithm for enhancement of the cell throughput in OFDMA based relay systems. Relay station (RS) is exploited for improved quality of the received signal in cellular communication systems, especially in shadow areas. However, since a RS requires additional radio resource consumption for the link between the base station (BS) and the RS, we have to carefully control the coverage areas if a mobile station (MS) is serviced via the BS or the RS considering the cell throughput. We consider radio resource reuse as well for the sub-cell coverage configuration by applying various reuse patterns between RSs. We also consider a time varying system by adaptively changing the threshold for coverage depending on the MSs' traffic in the cell. We initially determine the sub-cell coverage of the system depending on the ratio of received signal-interference-noise-ratio (SINR) of the MS from the BS and RSs, respectively. Then, the "sub-cell coverage threshold" varies based on the "effective transmitted bits per sub-channel" with time. Simulation result shows that the proposed "time varying coverage control algorithm" leads to throughput improvement compared to the fixed sub-cell coverage configuration.

Algorithm and experimental verification of underwater acoustic communication based on passive time reversal mirror in multiuser environment (다중송신채널 환경에서 수동형 시역전에 기반한 수중음향통신 알고리즘 및 실험적 검증)

  • Eom, Min-Jeong;Oh, Sehyun;Kim, J.S.;Kim, Sea-Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.167-174
    • /
    • 2016
  • Underwater communication is difficult to increase the communication capacity because the carrier frequency is lower than that of radio communications on land. This is limited to the bandwidth of the signal under the influence of the characteristics of an ocean medium. As the high transmission speed and large transmission capacity have become necessary in the limited frequency range, the studies on MIMO (Multiple Input Multiple Output) communication have been actively carried out. The performance of the MIMO communication is lower than that of the SIMO (Single Input Multiple Output) communication because cross-talk occurs due to multiusers along with inter symbol interference resulting from the channel characteristics such as delay spread and doppler spread. Although the adaptive equalizer considering multi-channels is used to mitigate the influence of the cross-talk, the algorithm is normally complicated. In this paper, time reversal mirror technique with the characteristic of a self-equalization will be applied to simplify the compensation algorithm and relieve the cross-talk in order to improve the communication performance when the signal transmitted from two channels is received over interference on one channel in the same time. In addition, the performance of the MIMO communication based on the time reversal mirror is verified using data from the SAVEX15(Shallow-water Acoustic Variability Experiment 2015) conducted at the northern area of East China Sea in May 2015.