DOI QR코드

DOI QR Code

Jammer Suppression by Eigen Analysis in Multi-Carrier Radar

멀티캐리어 레이더에서 고유치 해석에 의한 재머 억제

  • Jeon, Hyeon-Mu (Department of Electronics Convergence Engineering, Kwangwoon University) ;
  • Shin, Seong-Kwan (Defense Acquisition Program Administration) ;
  • Chung, Yong-Seek (Department of Electronics Convergence Engineering, Kwangwoon University) ;
  • Chung, Won-Zoo (Department of Radio Communications Engineering, Korea University) ;
  • Kim, Jong-Mann (Agency of Defence Development) ;
  • Yang, Hoon-Gee (Department of Electronics Convergence Engineering, Kwangwoon University)
  • Received : 2014.08.29
  • Accepted : 2014.11.05
  • Published : 2014.12.31

Abstract

For detection and parameter estimation, a multicarrier radar should discriminate a channel containing jamming signal and either leave it out or regenerate jammer suppressed target signal. To discriminate jamming channels, we use the angular spectrum of an eigenvector that embeds target echoes and jamming signals. We propose a criteria to discriminate the jammer channels and its basis through mathematical analysis. Moreover, we show some procedures to regenerate the jammer suppressed target echoes. Finally, the validity of the proposed method is demonstrated through simulation results showing improved performance in terms of direction of arrival(DOA) estimation.

멀티 캐리어 레이더는 수신 신호로부터 표적의 탐지 및 파라메타 추출을 수행하게 되므로, 신호처리에 앞서 재머 신호가 영향을 주는 채널을 배제시키거나, 재머가 억압된 신호를 이용해서 신호처리를 수행해야 한다. 본 연구에서는 멀티캐리어 레이더에서 재머 채널을 구분하고, 재머가 억제된 신호를 생성하는 방법을 제시한다. 재머 채널 구분을 위해서는 각 채널로부터 얻어진 공분산 행렬의 표적신호 및 재머 성분을 포함하는 고유벡터(eigenvector)의 각 스펙트럼(angular spectrum) 특성을 이용한다. 수학적 분석에 의해 재머 채널의 구분 기준 근거를 제시하며, 고유벡터 분석에 의해 재머가 억압된 신호를 생성할 수 있음을 보인다. DOA(Direction Of Arrival) 추정 시뮬레이션을 통해서 제시된 방법이 재머 채널 구분 및 재머가 억압된 신호를 효과적으로 생성할 수 있음을 보인다.

Keywords

References

  1. M. A. Richards, Fundamentals of Radar Signal Processing, McGraw-Hill-Interscience, pp. 67-79, 2005.
  2. E. Fishler, A. Haimovich, Rick S. Blum, Leonard J. Cimini, Dmitry Chizhik, and Reinaldo A. Valenzuela, "Spatial diversity in radars-models and detection performance", IEEE Transaction on Signal Processing, vol. 54, no. 3, pp. 823-838, 2006. https://doi.org/10.1109/TSP.2005.862813
  3. A. M. Haimovich, R. S. Blum, and L. J. Cimini, "MIMO radar with widely separated antennas", IEEE Signal Processing Magazine, vol. 25, no. 1, pp. 116-129, 2008. https://doi.org/10.1109/MSP.2008.4408448
  4. D. L. Mensa, "Wideband radar cross section diagnostic measurements", IEEE Transactions on Instrumentation and Measurement, vol. IM-33, no. 3, pp. 206-214, 1984.
  5. F. Weinmann, "Frequency dependent RCS of a generic airborne target", in URSI EMTS, International Symposium on Electromagnetic Theory, Berlin, Germany, pp. 977-980, Aug. 2010.
  6. F. E. Nathanson, J. P. Reilly, and M. N. Cohen, Radar Design Principles : Signal Processing and the Environment, 2nd Ed., McGraw-Hill-Interscience, New York, 1990.
  7. J. J. Zhang, A. Papandreou-Suppappola, "MIMO radar with frequency diversity", in Proceedings of International Conference of Waveform Diversity and Dessign, Kissimmee, USA, pp. 208-212, Feb. 2009.
  8. Y. Qu, G. S. Liao, S. Q. Zhu, X. Y. Liu, and H. Jiang, "Performance analysis of beamforming for MIMO radar", Progress in Electromagnetics Research, PIER 84, pp. 123-134, 2008.
  9. A. Goldsmith, Wireless Communication, Cambridge University Press, New York, pp. 206-217, 2005.
  10. Wulf-Dieter Wirth, "Radar techniques using array antennas(FEE radar, sonar, navigation & avionics series)", Institution of Engineering & Technology, pp. 221-252, 2001.
  11. Sergiy A. Vorobyov, "Principles of minimum variance robust adaptive beamforming design", Signal Processing 93, pp. 3264-3277, 2013. https://doi.org/10.1016/j.sigpro.2012.10.021
  12. Hai Deng, "Adaptive signal processing for jammer suppression using MIMO radar", Antennas and Propagation(APSURSI) IEEE international Symposium, pp. 289-292, 2011.
  13. J. Li, P. Stoica, MIMO Radar Signal Processing, Wiley, 2008.