• Title/Summary/Keyword: multi-radio

Search Result 791, Processing Time 0.027 seconds

A Fiber Spool's Vibration Sensitivity Optimization Based on Orthogonal Experimental Design

  • Jing Gao;Linbo Zhang;Dongdong Jiao;Guanjun Xu;Xue Deng;Qi Zang;Honglei Yang;Ruifang Dong;Tao Liu;Shougang Zhang
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.45-55
    • /
    • 2024
  • A fiber spool with ultra-low vibration sensitivity has been demonstrated for the ultra-narrow-linewidth fiber-stabilized laser by the multi-object orthogonal experimental design method, which can achieve the optimization object and analysis of influence levels without extensive computation. According to a test of 4 levels and 4 factors, an L16 (44) orthogonal table is established to design orthogonal experiments. The vibration sensitivities along the axial and radial directions and the normalized sums of the vibration sensitivities are determined as single objects and comprehensive objects, respectively. We adopt the range analysis of object values to obtain the influence levels of the four design parameters on the single objects and the comprehensive object. The optimal parameter combinations are determined by both methods of comprehensive balance and evaluation. Based on the corresponding fractional frequency stability of ultra-narrow-linewidth fiber-stabilized lasers, we obtain the final optimal parameter combination A3B1C2D1, which can achieve the fiber spool with vibration sensitivities of 10-12/g magnitude. This work is the first time to use an orthogonal experimental design method to optimize the vibration sensitivities of fiber spools, providing an approach to design the fiber spool with ultra-low vibration sensitivity.

Fan-shaped Search Zone Routing Protocol for Ship Ad Hoc Networks (선박 애드 혹 네트워크를 위한 부채꼴 탐색구역 경로배정 프로토콜)

  • Son, Joo-Young
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.6
    • /
    • pp.521-528
    • /
    • 2008
  • Such conventional maritime communication technologies as radio have short some comings in their transmission quality. It can be overcome by wireless channels provided by satellites such as INMARSAT, which nevertheless suffer from the high costs. In this paper, we propose a novel technology resolving the above problems, featuring in the establishment of maritime communication networks with multi-hop structures. The inter vessel and ship-to- shore networks previously modeled after MANET are remodeled by SANET (Ship Ad Hoc Networks) in the present work. Fan-shaped Search Zone Routing (FSR) protocol also is presented, which utilizes not only static geographical information including the locations of ports and the navigations of courses but also the unique characteristics of ships in terms of mobile nodes. The FSR finds the fan-shaped search zone on which the shortest path is located. The performance of LAR protocol is compared with that of FSR in several ways. First, FSR does not make use of a type of control packets as beaconing data, resulting in a full utilization of the bandwidth of the wireless channels. Second, the delivery rate by the FSR is 100% for the fan-shaped search zone includes at least one route between source and destination nodes on its border line, where as that of LAR has been turned out to be 64%. Third, the optimality of routes searched by the FSR is on a 97% level. Of all, the FSR shows a better performance than LAR by about 50%.

The Performance Analysis of Equalizer for Next Generation W-LAN with OFDM System (OFDM 방식의 차세대 무선 LAN 환경에서 등화기의 성능 분석)

  • Han, Kyung-Su;Youn, Hee-Sang
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.1
    • /
    • pp.44-51
    • /
    • 2002
  • This paper describes the performance evaluation and analysis of an Orthogonal Frequency-Division Multiplexing (OFDM) system having the least Inter Symbol Interference (ISI) in a multi-path fading channel environment. Wireless Local Area Network (W-LAN) in accordance with IEEE 802.11a and IEEE 802.11b provides high-speed transmission to universities, businesses and other various places. In addition, service providers can offer a public W-LAN service on restricted areas such as a subway. The proliferation of W-LAN has led to greater W-LAN service demands, but problems are also on the rise in offering a good W-LAN service. In particular, urban areas with high radio wave interference and many buildings are vulnerable to deteriorated QoS including disconnected data and errors. For example, when high-speed data is transmitted in such areas, the relatively high frequency generates ISI between Access Points (AP) and Mobile Terminals (such as a notebook computer), leading to a frequency selective fading channel environment. Consequently, it is difficult to expect a goodW-LAN service. The simulation proves that the OFDM system enables W-LAN to implement QoS in high-speed data transmission in a multi-path fading channel environment. The enhanced OFDM performance with 52 sub-carriers is verified via data modulation methods such as BPSK, QPSK and 16QAM based on IEEE 802.11a and punched convolutional codes with code rate of 1/2 and 3/4 and constraint length of 7. Especially, the simulation finds that the OFDM system has better performance and there is no data disconnection even in a mobile environment by applying a single tap equalizer and a decision feedback equalizer to a mobile channel environment with heavy fading influence. Given the above result, the OFDM system is an ideal solution to guarantee QoS of the W-LAN service in a high-speed mobile environment.

  • PDF

A Study and Design of Beam Scanning Array Antenna using IR-UWB (IR-UWB를 이용한 빔 스캐닝 배열 안테나 설계 및 연구)

  • Kim, Keun-Yong;Kang, Eun-Kyun;Kim, Jin-Woo;Ra, Keuk-Whan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.194-201
    • /
    • 2014
  • This paper is able to be solved by improving degradation in multi-path environment by adjust beam pattern angle through modifying pulse phase of each antennas by using TRM (Transmitter Receiver Module). Beam Scanning Array Antenna, which is transmitter/receiver that improves degradation in multi-path environment without any signal distortion, is designed and manufactured. Beam Scanning Array Antenna should be able to send/receive signal at the antenna's longitudinal part without distortion and should not influences other systems. Also, it should include target detecting ability by beam steering.Dispersion characteristic of Beam Scanning Antenna, which is designed, is analysed by using fidelity, and steering and radar resolution performance is verified by using $1cm{\times}1cm$ sized target. To manufacture Beam Scanning Array Antenna, control board and GUI, which is able to control Vivaldi Antenna for IR-UWB, Tri-Band Wilkinson power divider, and TRM (Transmitter Receiver Module), is designed. Throughout this research, developed Beam Scanning UWB Array Antenna system is adoptable for radar application field. and time domain analysis techniques by using network analyser made the antenna characteristics analysis for setting up antenna more accurate. In addition, it makes beam width checking without difficulties.

OPTICAL MULTI-CHANNEL INTENSITY INTERFEROMETRY - OR: HOW TO RESOLVE O-STARS IN THE MAGELLANIC CLOUDS

  • Trippe, Sascha;Kim, Jae-Young;Lee, Bangwon;Choi, Changsu;Oh, Junghwan;Lee, Taeseok;Yoon, Sung-Chul;Im, Myungshin;Park, Yong-Sun
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.235-253
    • /
    • 2014
  • Intensity interferometry, based on the Hanbury Brown-Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25 000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as $m_R{\approx}14$, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass-radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade-Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.

B1+ Homogenizaion over Whole Field of View in High Field MRI (고자장 MRI에서의 영상 영역에 대한 B1+ 균질성)

  • Kim, Hong-Joon;Son, Hyeok-Woo;Cho, Young-Ki;Yoo, Hyoung-Suk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.96-100
    • /
    • 2012
  • In high static field magnetic resonance imaging(MRI) systems, $B_0$ fields of 7 T and 9.4 T, the impressed RF field shows larger inhomogeneity than in clinical MRI systems with B0 fields of 1.5 T and 3.0 T. In multi-channel RF coils, the magnitude and phase of the input to each coil element can be controlled independently to reduce the non-uniformity of the impressed RF $B_1^+$ field. The convex optimization technique has been used to obtain the optimum excitation parameters with iterative solutions for homogeneity in a selected ROI(Region of Interest). To demonstrate the technique, the multichannel transmission line coil was modeled together with a human head phantom at 400 MHz for the 9.4 T MRI system and $B_1^+$ fields are obtained. In this paper, all the optimized $B_1^+$ in each isolated ROIs are combined to achieve significantly improved homogeneity over the entire field of view. The simulation results for 9.4 T MRI systems are discussed in detail.

Performance Evaluation of Wireless Sensor Networks in the Subway Station of Workroom (지하철 역사내 무선 센서네트워크 환경구축을 위한 무선 스펙트럼 분석 및 전송시험에 관한 연구)

  • An, Tea-Ki;Kim, Gab-Young;Yang, Se-Hyun;Choi, Gab-Bong;Sim, Bo-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3220-3226
    • /
    • 2011
  • In order to monitor internal risk factors such as fire, terror, etc. on the subway station, the surveillance systems using CCTV and various kinds of sensors have been implemented and recently, introduction of surveillance systems using an advanced IT technology, sensor network technology is tried on several areas. Since 2007, Korean government has made an effort to develop the intelligent surveillance and monitoring system, which can monitor fire, intrusion, passenger congestion, health-state of structure, etc., by using wireless sensor network technology and intelligent video analytic technique. For that purpose, this study carried out field wireless communication environment test on Chungmuro Station of Seoul Metro on the basis of ZigBee that is considered as a representative wireless sensor network before field application of the intelligent integrated surveillance system being developed, arranged and analyzed and ZigBee based wireless communication environment test results on the platform and waiting room of Chungmuro Station on this paper. Results of wireless spectrum analysis on the platform and waiting room showed that there is no radio frequency overlapped with that of ZigBee based sensor network and no frequency interference with adjacent frequencies separated 10MHz or more. As results of wireless data transmission test using ZigBee showed that data transmission is influenced by multi-path fading effect from the number and flow rate of passengers on the platform or the waiting room rather than effects from entrance and exit of the train to/from the platform, it should be considered when implementing the intelligent integrated surveillance system on the station.

The Channel Scheduler based on Water-filling Algorithm for Best Effort Forward Link Traffics in AMC/TDM/CDM System (AMC/TDM/CDM 다중접속방식에서의 Best Effort 순방향 서비스를 위한 Water-filling Based 채널 스케줄러)

  • Ma, Dongl-Chul;Ki, Young-Min;Kim, Dong-Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.1
    • /
    • pp.59-71
    • /
    • 2003
  • The channel scheduler is suggested the radio resource management method in order to provide service with guaranteeing fairness and throughput to the users who use limited wireless channel. Proportional fairness scheduling algorithm is the channel scheduler used in the AMC(Adaptive Modulation and Coding)/TDM system, and this algorithm increases the throughput considering the user's time fairness. In this paper is suggested the channel scheduler combining CDM scheme available in AMC/TDM/CDM system. Unlike the system which only uses TDM which provide the only one user at the same slot, this scheduler can service a lot of users since this uses the CDM scheme with multi-cord channel. At every moment, allocation of transmission power to multi-channel users is problematic because of CDM scheme. In this paper, we propose a water-filling scheduling algorithm to solve the problem. Water-filling fairness(WF2) scheduling algorithm watches the average channel environment. So, this modified method guarantees fairness for each user in terms of power and service time.

  • PDF

SINR Maximizing Collaborative Beamforming with Enhanced Robustness Against Antenna Correlation (안테나 간 상관도에 강건한 SINR 최대화 협력적 빔포밍 기법)

  • Kim, Jae-Won;Sung, Won-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.95-103
    • /
    • 2009
  • In this paper, a generation method of transmit and receive beamforming vectors based on base station cooperation is proposed which maximizes the user SINR in mobile cellular multi-user MIMO systems. There are two main sources of interference which deteriorate the performance of the system, i.e. the inter-user interference caused by the usage of the same radio resource for multiple users in the system, and the inter-cluster interference from neighboring base stations which are not participating in cooperative transmission. The proposed scheme cancels out the inter-user interference by using the block diagonalization(BD) method, and mitigate the inter-cluster interference by using optimal transmit and receive beamforming vectors based on optimal combining(OC) with the statistic information of inter-cluster interference. We perform computer simulations to verify the performance of the proposed scheme, and compare the result to the conventional performance obtained from utilizing the receiver side information only or utilizing the information from neither sides. The performance evaluations are conducted not only over the independent MIMO channels, but over correlated MIMO channels to demonstrate the robustness of the proposed scheme over the channels with correlation among antennas.

IMAGING SIMULATIONS FOR THE KOREAN VLBI NETWORK(KVN) (한국우주전파관측망(KVN)의 영상모의실험)

  • Jung, Tae-Hyun;Rhee, Myung-Hyun;Roh, Duk-Gyoo;Kim, Hyun-Goo;Sohn, Bong-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2005
  • The Korean VLBI Network (KVN) will open a new field of research in astronomy, geodesy and earth science using the newest three Elm radio telescopes. This will expand our ability to look at the Universe in the millimeter regime. Imaging capability of radio interferometry is highly dependent upon the antenna configuration, source size, declination and the shape of target. In this paper, imaging simulations are carried out with the KVN system configuration. Five test images were used which were a point source, multi-point sources, a uniform sphere with two different sizes compared to the synthesis beam of the KVN and a Very Large Array (VLA) image of Cygnus A. The declination for the full time simulation was set as +60 degrees and the observation time range was -6 to +6 hours around transit. Simulations have been done at 22GHz, one of the KVN observation frequency. All these simulations and data reductions have been run with the Astronomical Image Processing System (AIPS) software package. As the KVN array has a resolution of about 6 mas (milli arcsecond) at 220Hz, in case of model source being approximately the beam size or smaller, the ratio of peak intensity over RMS shows about 10000:1 and 5000:1. The other case in which model source is larger than the beam size, this ratio shows very low range of about 115:1 and 34:1. This is due to the lack of short baselines and the small number of antenna. We compare the coordinates of the model images with those of the cleaned images. The result shows mostly perfect correspondence except in the case of the 12mas uniform sphere. Therefore, the main astronomical targets for the KVN will be the compact sources and the KVN will have an excellent performance in the astrometry for these sources.