• Title/Summary/Keyword: multi-phase flow

Search Result 299, Processing Time 0.025 seconds

Development of Nanomodified Snow-Melting Concrete Using Low-Temperature Phase-Change Material Impregnated Lightweight Aggregate (저온 상변화 물질 함침 경량골재를 이용한 나노 개질 융설 콘크리트 개발)

  • Kyoung, Joo-Hyun;Kim, Sean-Mi;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.787-792
    • /
    • 2022
  • In winter, the excessive use of deicing salt deteriorates concrete pavement durability. To reduce the amount of deicing salt used, phase-change materials (PCMs) potentially offer an alternative way to melt snow through their latent heat storage characteristics. In this research, thermal energy storage concrete was developed by using PCM-impregnated expanded clay as 50 % replacement to normal aggregate by volume. In addition, to improve the thermal efficiency of PCM lightweight aggregate (PCM-LWA)-incorporated concrete, multi-walled carbon nanotubes (MWCNTs) were incorporated in proportions of 0.10 %, 0.15 %, and 0.20 % by binder weight. Compressive strength testing and programmed thermal cycling were performed to evaluate the mechanical and thermal responses of the PCM-LWA concrete. Results showed a significant strength reduction of 54 % due to the PCM-LWA; however, the thermal performance of the PCM-LWA concrete was greatly improved with the addition of MWCNTs. Thermal test results showed that 0.10 % MWCNT-incorporated concrete had high thermal fatigue resistance as well as uniform heat flow, whereas specimens with 0.15 % and 0.20 % MWCNT content had a reduced thermal response due to supercooling when the ambient temperature was varied between -5℃ and 10℃.

Analytical Quality by Design Methodology Approach for Simultaneous Quantitation of Paeoniflorin and Decursin in Herbal Medicine by RP-HPLC Analysis

  • Kim, Min Kyoung;Park, Geonha;Hong, Seon-Pyo;Jang, Young Pyo
    • Natural Product Sciences
    • /
    • v.27 no.4
    • /
    • pp.264-273
    • /
    • 2021
  • Simultaneous quantification of multiple marker compounds in herbal medicine by high performance liquid chromatography (HPLC) analysis is still a challenge due to the complexity in various parameters to be considered and co-existing multi-components. As a case study, a reliable HPLC method for simultaneous quantification of paeoniflorin from Paeoniae Radix and decursin from Angelicae Gigantis Radix in various commercial herbal medicine was developed based on analytical quality by design (AQbD) strategy. As a first step, risk assessment was performed to select the critical method parameters (CMPs) which were decided as organic mobile phase ratio and column oven temperature. In order to evaluate the effect of the CMPs on critical method attributes (CMAs) of peak resolution and tailing, central composite design (CCD) was employed. The final chromatographic conditions were optimized as follows: column- C18, 4.6 × 250 mm, 5 ㎛ particle size; mobile phase- A: acetonitrile, B: 0.1% acetic acid water; detection wavelength- 235 nm for paeoniflorin, 325 nm for decursin; column oven temperature- 25℃; flow rate- 1.0 mL/min; gradient mobile phase system as Time (min) : % A, 0:14, 25:14, 30:50, 60:50, 61:100, 65:100, 66:14, 75:14. The method was successfully validated according to the International Conference on Harmonization (ICH) guidelines and piloted for ten commercial herbal medicines.

Distributed Multi-channel Assignment Scheme Based on Hops in Wireless Mesh Networks (무선 메쉬 네트워크를 위한 홉 기반 분산형 다중 채널 할당 방안)

  • Kum, Dong-Won;Choi, Jae-In;Lee, Sung-Hyup;Cho, You-Ze
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.5
    • /
    • pp.1-6
    • /
    • 2007
  • In wireless mesh networks (WMNs), the end-to-end throughput of a flow decreases drastically according to the traversed number of hops due to interference among different hops of the same flow in addition to interference between hops of different flows with different paths. This paper proposes a distributed multi-channel assignment scheme based on hops (DMASH) to improve the performance of a static WMN. The proposed DMASH is a novel distributed multi-channel assignment scheme based on hops to enhance the end-to-end throughput by reducing interference between channels when transmitting packets in the IEEE 802.11 based multi-interface environments. The DMASH assigns a channel group to each hop, which has no interference between adjacent hops from a gateway in channel assignment phase, then each node selects its channel randomly among the channel group. Since the DMASH is a distributed scheme with unmanaged and auto-configuration of channel assignment, it has a less overhead and implementation complexity in algorithm than centralized multi-channel assignment schemes. Simulation results using the NS-2 showed that the DMASH could improve remarkably the total network throughput in multi-hop environments, comparing with a random channel assignment scheme.

Flow Field Separating Technique in Bubbly Flow using Discrete Wavelet (이산 웨이블릿을 이용한 Bubbly flow의 유통분리기법)

  • Jo, Hyo-Jae;Doh, Deog-Hee;Choi, Je-Eun;Takei, Masahiro;Kang, Byung-Yoon
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.777-783
    • /
    • 2008
  • Nowadays wavelet transforms are widely used for the analyses of PIV velocity vector fields. This is bemuse the wavelet provides not only spatial information of the velocity vectors but also of time and frequency domains. In this study, a discrete wavelet trC1f1$form has been applied to real PIV images of bubbly flows. The vector fields obtained by a self-made cross-correlation PIV algorithm were used for the discrete wavelet transform The performances of the discrete wavelet transform is investigated by changing the level of power of discretization. The decomposed images by the wavelet multiresolution showed conspicuous characteristics of the bubbly flows according to the level changes. The high spatial bubble concentrated area could be evaluated by the constructed discrete wavelet transform algorithm, at which high leveled wavelets could play a dominant roles to reveal the flow characteristics.

Thermodynamic Energy Balance Analysis of Underground Lined Rock Caverns (LRC) for Compressed Air Energy Storage (CAES) (복공식 지하 압축공기에너지 저장공동의 열역학적 에너지수지 분석)

  • Kim, Hyung-Mok;Park, Do-Hyun;Ryu, Dong-Woo;Choi, Byung-Hee;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.297-306
    • /
    • 2011
  • In this paper, we performed thermodynamic energy balance analysis of the underground lined rock cavern for compressed air energy storage (CAES) using the results of multi-phase heat flow analysis to simulate complex groundwater-compressed air flow around the cavern as well as heat transfer to concrete linings and surrounding rock mass. Our energy balance analysis demonstrated that the energy loss for a daily compression and decompression cycle predominantly depends on the energy loss by heat conduction to the concrete linings and surrounding rock mass for a sufficiently air-tight system with low permeability of the concrete linings. Overall energy efficiency of the underground lined rock caverns for CAES was sensitive to air injection temperature, and the energy loss by heat conduction can be minimized by keeping the air injection temperature closer to the ambient temperature of the surroundings. In such a case, almost all the heat loss during compression phase was gained back in a subsequent decompression phase. Meanwhile, the influence of heat conductivity of the concrete linings to energy efficiency was negligible.

Vortex-induced vibration of a long flexible cylinder in uniform cross-flow

  • Ji, Chunning;Peng, Ziteng;Alam, Md. Mahbub;Chen, Weilin;Xu, Dong
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.267-277
    • /
    • 2018
  • Numerical simulations are performed of a long flexible cylinder undergoing vortex-induced vibration at a Reynolds number of 500. The cylinder is pinned at both ends, having an aspect ratio of 100 (cylinder length to cylinder diameter) and a mass ratio of 4.2 (structural mass to displaced fluid mass). Temporal and spatial information on the cross-flow (CF) and in-line (IL) vibrations is extracted. High modal vibrations up to the $6^{th}$ in the CF direction and the $11^{th}$ in the IL direction are observed. Both the CF and IL vibrations feature a multi-mode mixed pattern. Mode competition is observed. The $2^{nd}$ mode with a low frequency dominates the IL vibration and its existence is attributed to a wave group propagating back and forth along the span. Distributions of fluid force coefficients are correlated to those of the CF and IL vibrations along the span. Histograms of the x'-y motion phase difference are evaluated from the total simulation time and a complete vibration cycle representing the standing or travelling wave pattern. Correlations between the phase difference and the vibrations are discussed. Vortex structures behind the cylinder show an interwoven near-wake pattern when the standing wave pattern dominates, but an oblique near-wake pattern when the travelling wave pattern prevails.

Multi-phase Flow Modeling of Vapor Explosion Propagation (증기폭발 전파과정 해석을 위한 다상유동 모델 개발)

  • Park, I. K.;Park, G. C.;K. H. Bang
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.103-117
    • /
    • 1996
  • A mathematical model of vapor explosion propagation is presented. The model predict two-dimensional, transient flow fields and energies of the four fluid phases of melt drop, fragmented debris, liquid coolant and vapor coolant by solving a set of governing equations with the relevant constitutive relations. These relations include melt fragmentation, coolant-phase-change, and heat and momentum exchange models. To allow thermodynamic non-equilibrium between the coolant liquid and vapor, an equation of state for oater is uniquely formulated. A multiphase code, TRACER, has been developed based on this mathematical formulation. A set of base calculations for tin/water explosions show that the model predicts the explosion propagation speed and peak pressure in a reasonable degree although the quantitative agreement relies strongly on the parameters in the constitutive relations. A set of calculations for sensitivity studies on these parameters have identified the important initial conditions and relations. These are melt fragmentation rate, momentum exchange function, heat transfer function and coolant phase change model as well as local vapor fractions and fuel fractions.

  • PDF

A coupled geomechanical reservoir simulation analysis of CO2 - EOR: A case study

  • Elyasi, Ayub;Goshtasbi, Kamran;Hashemolhosseini, Hamid
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.423-436
    • /
    • 2016
  • Currently, there is a great interest in the coupling between multiphase fluid flow and geomechanical effects in hydrocarbon reservoirs and surrounding rocks. The ideal solution for this coupled problem is to introduce the geomechanical effects through the stress analysis solution and implement an algorithm, which assures that the equations governing the flow and stress analyses are obeyed in each time step. This paper deals with the implementation of a program (FORTRAN90 interface code), which was developed to couple conventional reservoir (ECLIPSE) and geomechanical (ABAQUS) simulators, using a partial coupling algorithm. The explicit coupled hydro-mechanical behavior of Iranian field during depletion and $CO_2$ injection is studied using the soils consolidation procedure available in ABAQUS. Time dependent reservoir pressure fields obtained from three dimensional compositional reservoir models were transferred into finite element reservoir geomechanical models in ABAQUS as multi-phase flow in deforming reservoirs cannot be performed within ABAQUS. The FEM analysis of the reservoir showed no sign of plastic strain under production and $CO_2$ injection scenarios in any part of the reservoir and the stress paths do not show a critical behavior.

Analysis of collection Characteristics of Landfill Gas Using ]Relative Fluid Permeability of Gas and Water in Waste Landfill (쓰레기 매립지에서 가스-물 상대유체투과도를 적용한 매립가스의 포집특성분석)

  • 김인기;허대기;김현태;김세준;성원모
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.3
    • /
    • pp.35-54
    • /
    • 2001
  • It is difficult to accurately predict each flow rate of landfill gas and leachate extracted from many of wells, which have been completed into a waste landfill containing gas and water. However it may be approximately predicted if we can define only relative fluid permeability of gas and leachate flowing through landfill porous media. Therefore numerical simulation using multi-phase flow equations makes use of ei s input data of the relative permeability which is measured and calculated in laboratory environment like in-situ, and consequently we can quantitatively obtain each flow rate of gas and leachate from collection wells. These series of technologies can provide with the important informations to determine the success or failure of landfill gas energy and landfill stabilization. This paper analyses the characteristics of landfill gas collection by six classes of case studies for none described landfill.

  • PDF

Numerical Study on Compressible Multiphase Flow Using Diffuse Interface Method (Diffuse Interface Method를 이용한 압축성 다상 유동에 관한 수치적 연구)

  • Yoo, Young-Lin;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.15-22
    • /
    • 2018
  • A compressible multiphase flow was investigated using a DIM consisting of seven equations, including the fifth-order MLP and a modified HLLC Riemann solver to achieve a precise interface structure of liquid and gas. The numerical methods were verified by comparing the flow structures of the high-pressure water and low-pressure air in the shock tube. A 2D air-helium shock-bubble interaction at the incident shock wave condition (Mach number 1.22) was numerically solved and verified using the experimental results.