• 제목/요약/키워드: multi-objective optimization technique

검색결과 123건 처리시간 0.031초

Sparse and low-rank feature selection for multi-label learning

  • Lim, Hyunki
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권7호
    • /
    • pp.1-7
    • /
    • 2021
  • 본 논문에서는 다중 레이블 분류를 위한 특징 선별 기법을 제안한다. 기존 많은 특징 선별 기법들은 상호정보척도 등을 이용하여 특징과 레이블 사이의 연관성을 계산하여 특징을 선별하였다. 하지만 상호정보척도는 결합 확률을 요구하기 때문에 실제 전제 특징 집합에서 결합 확률을 계산하는 것은 어렵다. 따라서 소수의 특징만 계산이 가능하여 지역적 최적화만 가능하다는 단점을 가진다. 이런 지역적 최적화 문제를 피해, 주어진 특징 전체 공간에서 저랭크 공간을 구성하고, 희소성을 가진 특징들을 선별할 수 있는 특징 선별 기법을 제안한다. 이를 위해 뉴클리어 노름을 이용해 회귀 기반의 목적함수를 설계하였고, 이 목적 함수의 최적화 문제를 풀기 위한 경사하강법 방식의 알고리즘을 제안하였다. 4가지의 데이터와 3가지 다중 레이블 분류 성능을 기준으로 다중 레이블 분류 실험 결과를 통해 제안하는 방법론이 기존 특징 선별 기법보다 좋은 성능을 나타내는 것을 보였다. 또한 제안하는 목적함수의 파라미터 값 변화에도 성능 변화가 둔감한 것을 실험적인 결과로 확인하였다.

신뢰성 해석을 이용한 차량 후드 보강재의 위상최적화 (Topology Optimization of the Inner Reinforcement of a Vehicle's Hood using Reliability Analysis)

  • 박재용;임민규;오영규;박재용;한석영
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.691-697
    • /
    • 2010
  • Reliability-based topology optimization (RBTO) is to get an optimal topology satisfying uncertainties of design variables. In this study, reliability-based topology optimization method is applied to the inner reinforcement of vehicle's hood based on BESO. A multi-objective topology optimization technique was implemented to obtain optimal topology of the inner reinforcement of the hood. considering the static stiffness of bending and torsion as well as natural frequency. Performance measure approach (PMA), which has probabilistic constraints that are formulated in terms of the reliability index, is adopted to evaluate the probabilistic constraints. To evaluate the obtained optimal topology by RBTO, it is compared with that of DTO of the inner reinforcement of the hood. It is found that the more suitable topology is obtained through RBTO than DTO even though the final volume of RBTO is a little bit larger than that of DTO. From the result, multiobjective optimization technique based on the BESO can be applied very effectively in topology optimization for vehicle's hood reinforcement considering the static stiffness of bending and torsion as well as natural frequency.

MULTI-OBJECTIVE OPTIMIZATION OF THE INNER REINFORCEMENT FOR A VEHICLE'S HOOD CONSIDERING STATIC STIFFNESS AND NATURAL FREQUENCY

  • Choi, S.H.;Kim, S.R.;Park, J.Y.;Han, S.Y.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.337-342
    • /
    • 2007
  • A multi-objective optimization technique was implemented to obtain optimal topologies of the inner reinforcement for a vehicle's hood simultaneously considering the static stiffness of bending and torsion and natural frequency. In addition, a smoothing scheme was used to suppress the checkerboard patterns in the ESO method. Two models with different curvature were chosen in order to investigate the effect of curvature on the static stiffness and natural frequency of the inner reinforcement. A scale factor was employed to properly reflect the effect of each objective function. From several combinations of weighting factors, a Pareto-optimal topology solution was obtained. As the weighting factor for the elastic strain efficiency went from 1 to 0, the optimal topologies transmitted from the optimal topology of a static stiffness problem to that of a natural frequency problem. It was also found that the higher curvature model had a larger static stiffness and natural frequency than the lower curvature model. From the results, it is concluded that the ESO method with a smoothing scheme was effectively applied to topology optimization of the inner reinforcement of a vehicle's hood.

크리깅 메타모델에 의한 철도차량 현수장치 최적설계 (Optimization of a Train Suspension using Kriging Meta-model)

  • 이광기;이태희;박찬경
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.339-344
    • /
    • 2001
  • In recent engineering, the designer has become more and more dependent on the computer simulations such as FEM (Finite Element Method) and BEM (Boundary Element Method). In order to optimize such implicit models more efficiently and reliably, the meta-modeling technique has been developed for solving such a complex problems combined with the DACE (Design and Analysis of Computer Experiments). It is widely used for exploring the engineer's design space and for building meta-models in order to facilitate an effective solution of multi-objective and multi-disciplinary optimization problems. Optimization of a train suspension is performed according to the minimization of forty-six responses that represent ten ride comforts, twelve derailment quotients, twelve unloading ratios, and twelve stabilities by using the Kriging meta-model of a train suspension. After each Kriging meta-model is constructed, multi-objective optimal solutions are achieved by using a nonlinear programming method called SQP (Sequential Quadratic Programming).

  • PDF

The Bees Algorithm with Weighted Sum Using Memorized Zones for Multi-objective Problem

  • Lee, Ji-Young;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권3호
    • /
    • pp.395-402
    • /
    • 2009
  • This paper presents the newly developed Pareto-based multi-objective Bees Algorithm with weighted sum technique for solving a power system multi-objective nonlinear optimization problem. Specifically, the Pareto-based Bees Algorithm with memorized zone has been developed to alleviate both difficulties from classical techniques and intelligent techniques for multi-objective problems (MOP) and successfully applied to an Environmental/Economic (electric power) dispatch (EED) problem. This multi-objective Bees Algorithm has been examined and applied to the standard IEEE 30-bus six-generator test system. Simulation results have been compared to those obtained using other approaches. The comparison shows the potential and effectiveness of the proposed Bees Algorithm for solving the multi-objective EED problem.

Multi-Point Aerodynamic Shape Optimization of Rotor Blades Using Unstructured Meshes

  • Lee, Sang-Wook;Kwon, Oh-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.66-78
    • /
    • 2007
  • A multi-point aerodynamic shape optimization technique has been developed for helicopter rotor blades in hover based on a continuous adjoint method on unstructured meshes. The Euler flow solver and the continuous adjoint sensitivity analysis were formulated on the rotating frame of reference. The 'objective function and the sensitivity were obtained as a weighted sum of the values at each design point. The blade section contour was modified by using the Hicks-Henne shape functions. The mesh movement due to the blade geometry change was achieved by using a spring analogy. In order to handle the repeated evaluation of the design cycle efficiently, the flow and adjoint solvers were parallelized based on a domain decomposition strategy. A solution-adaptive mesh refinement technique was adopted for the accurate capturing of the wake. Applications were made to the aerodynamic shape optimization of the Caradonna-Tung rotor blades and the UH-60 rotor blades in hover.

다목적 최적화 기법을 이용한 동력장치의 실차 내구시험모드 생성에 관한 연구 (A Study on Endurance Test Mode Generation of Powertrain System Using Multi-Objective Optimization)

  • 이정환;성영화;이병용
    • 한국군사과학기술학회지
    • /
    • 제21권5호
    • /
    • pp.614-622
    • /
    • 2018
  • Based on army operating road profile, the endurance test of military vehicle aims to reproduce the similar loading conditions with mixture of proving ground tracks. It is so called as endurance test mode and its optimal generation is important to meet high reliability of endurance test. In this paper, proving ground optimization is proposed to achieve a close match to the target profile. Several performance measures such as torque-revolution counts or transmission ratio for the powertrain system can be considered as one of the objective functions. However, the one-side optimal endurance test mode may give the poor solution in the whole system point of view. To incorporate several goals simultaneously, this paper employs multi-objective optimization technique to generate endurance test mode. One of the most widely used method, weighted-sum method is applied here and the case study is discussed.

Development of Pareto strategy multi-objective function method for the optimum design of ship structures

  • Na, Seung-Soo;Karr, Dale G.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권6호
    • /
    • pp.602-614
    • /
    • 2016
  • It is necessary to develop an efficient optimization technique to perform optimum designs which have given design spaces, discrete design values and several design goals. As optimization techniques, direct search method and stochastic search method are widely used in designing of ship structures. The merit of the direct search method is to search the optimum points rapidly by considering the search direction, step size and convergence limit. And the merit of the stochastic search method is to obtain the global optimum points well by spreading points randomly entire the design spaces. In this paper, Pareto Strategy (PS) multi-objective function method is developed by considering the search direction based on Pareto optimal points, the step size, the convergence limit and the random number generation. The success points between just before and current Pareto optimal points are considered. PS method can also apply to the single objective function problems, and can consider the discrete design variables such as plate thickness, longitudinal space, web height and web space. The optimum design results are compared with existing Random Search (RS) multi-objective function method and Evolutionary Strategy (ES) multi-objective function method by performing the optimum designs of double bottom structure and double hull tanker which have discrete design values. Its superiority and effectiveness are shown by comparing the optimum results with those of RS method and ES method.

Multi-objective optimization of foundation using global-local gravitational search algorithm

  • Khajehzadeh, Mohammad;Taha, Mohd Raihan;Eslami, Mahdiyeh
    • Structural Engineering and Mechanics
    • /
    • 제50권3호
    • /
    • pp.257-273
    • /
    • 2014
  • This paper introduces a novel optimization technique based on gravitational search algorithm (GSA) for numerical optimization and multi-objective optimization of foundation. In the proposed method, a chaotic time varying system is applied into the position updating equation to increase the global exploration ability and accurate local exploitation of the original algorithm. The new algorithm called global-local GSA (GLGSA) is applied for optimization of some well-known mathematical benchmark functions as well as two design examples of spread foundation. In the foundation optimization, two objective functions include total cost and $CO_2$ emissions of the foundation subjected to geotechnical and structural requirements are considered. From environmental point of view, minimization of embedded $CO_2$ emissions that quantifies the total amount of carbon dioxide emissions resulting from the use of materials seems necessary to include in the design criteria. The experimental results demonstrate that, the proposed GLGSA remarkably improves the accuracy, stability and efficiency of the original algorithm.

선호도 기반 최적화 방법을 사용한 복합 구조 제어 시스템 설계 (Hybrid Structural Control System Design Using Preference-Based Optimization)

  • 박원석;박관순;고현무
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.401-408
    • /
    • 2006
  • An optimum design method for hybrid control systems is proposed in this study. By considering both active and passive control systems as a combined or a hybrid system, the optimization of the hybrid system can be achieved simultaneously. In the proposed approach, we consider design parameters of active control devices and the elements of the feedback gain matrix as design variables for the active control system. Required quantity of the added dampers are also treated as design variables for the passive control system. In the proposed method, the cost of both active and passive control devices, the required control efforts and dynamic responses of a target structure are selected as objective functions to be minimized. To effectively address the multi-objective optimization problem, we adopt a preference-based optimization model and apply a genetic algorithm as a numerical searching technique. As an example to verify the validity of the proposed optimization technique, a wind-excited 20-storey building with hybrid control systems is used and the results are presented.

  • PDF