• Title/Summary/Keyword: multi-objective optimization problem

Search Result 309, Processing Time 0.025 seconds

Multi-Objective Optimization of Steel Frames For Standardized Steel Profiles Under Seismic Loads (지진하중을 받는 강뼈대구조물의 표준단면에 대한 다목적 최적설계)

  • Cho, Hyo Nam;Min, Dae Hong;Jeong, Bong Gyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.783-791
    • /
    • 2002
  • An improved formulation for multi-objective optimization was proposed. This formulation was applied to steel seismic loads. The multi-objective optimization problem was formulated with minimum structural weight, maximum strstability. The global criterion method was employed to find a rational solution closest to the ideal solution for the optimization problem using standard steel profile, To efficiently solve the optimization problem, the decomposition meth both system-level and element-level was used. In addition, various techniques including efficient reanalysis technique intermediate variables and sensitivity analysis using an automatic differentiation(AD) were incorporated. Moreover the reamong section properties fitted to the section profile used in order to link the system level and the element level. From numerical investigation, it could be stated that the proposed method will lead to the more rational design compared with one.

Quantum Bee Colony Optimization and Non-dominated Sorting Quantum Bee Colony Optimization Based Multi-relay Selection Scheme

  • Ji, Qiang;Zhang, Shifeng;Zhao, Haoguang;Zhang, Tiankui;Cao, Jinlong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4357-4378
    • /
    • 2017
  • In cooperative multi-relay networks, the relay nodes which are selected are very important to the system performance. How to choose the best cooperative relay nodes is an optimization problem. In this paper, multi-relay selection schemes which consider either single objective or multi-objective are proposed based on evolutionary algorithms. Firstly, the single objective optimization problems of multi-relay selection considering signal to noise ratio (SNR) or power efficiency maximization are solved based on the quantum bee colony optimization (QBCO). Then the multi-objective optimization problems of multi-relay selection considering SNR maximization and power consumption minimization (two contradictive objectives) or SNR maximization and power efficiency maximization (also two contradictive objectives) are solved based on non-dominated sorting quantum bee colony optimization (NSQBCO), which can obtain the Pareto front solutions considering two contradictive objectives simultaneously. Simulation results show that QBCO based multi-relay selection schemes have the ability to search global optimal solution compared with other multi-relay selection schemes in literature, while NSQBCO based multi-relay selection schemes can obtain the same Pareto front solutions as exhaustive search when the number of relays is not very large. When the number of relays is very large, exhaustive search cannot be used due to complexity but NSQBCO based multi-relay selection schemes can still be used to solve the problems. All simulation results demonstrate the effectiveness of the proposed schemes.

A Design Of Control System Satisfying Multi-Performance Specifications Using Adaptive Genetic Algorithms (적응 유전자 알고리즘을 이용한 다수의 성능 사양을 만족하는 제어계의 설계)

  • 윤영진;원태현;이영진;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.621-624
    • /
    • 2002
  • The purpose of this paper is a study on getting proper gain set of PID controller which satisfies multi-performance specifications of the control system. The multi-objective optimization method is introduced to evaluate specifications, and the genetic algorithm is used as an optimal problem solver. To enhance the performance of genetic algorithm itself, adaptive technique is included. According to the proposed method in this paper, finding suitable gain set can be more easily accomplishable than manual gain seeking and tuning.

  • PDF

A novel PSO-based algorithm for structural damage detection using Bayesian multi-sample objective function

  • Chen, Ze-peng;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.825-835
    • /
    • 2017
  • Significant improvements to methodologies on structural damage detection (SDD) have emerged in recent years. However, many methods are related to inversion computation which is prone to be ill-posed or ill-conditioning, leading to low-computing efficiency or inaccurate results. To explore a more accurate solution with satisfactory efficiency, a PSO-INM algorithm, combining particle swarm optimization (PSO) algorithm and an improved Nelder-Mead method (INM), is proposed to solve multi-sample objective function defined based on Bayesian inference in this study. The PSO-based algorithm, as a heuristic algorithm, is reliable to explore solution to SDD problem converted into a constrained optimization problem in mathematics. And the multi-sample objective function provides a stable pattern under different level of noise. Advantages of multi-sample objective function and its superior over traditional objective function are studied. Numerical simulation results of a two-storey frame structure show that the proposed method is sensitive to multi-damage cases. For further confirming accuracy of the proposed method, the ASCE 4-storey benchmark frame structure subjected to single and multiple damage cases is employed. Different kinds of modal identification methods are utilized to extract structural modal data from noise-contaminating acceleration responses. The illustrated results show that the proposed method is efficient to exact locations and extents of induced damages in structures.

A Constrained Multi-objective Computation Offloading Algorithm in the Mobile Cloud Computing Environment

  • Liu, Li;Du, Yuanyuan;Fan, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4329-4348
    • /
    • 2019
  • Mobile cloud computing (MCC) can offload heavy computation from mobile devices onto nearby cloudlets or remote cloud to improve the performance as well as to save energy for these devices. Therefore, it is essential to consider how to achieve efficient computation offloading with constraints for multiple users. However, there are few works that aim at multi-objective problem for multiple users. Most existing works concentrate on only single objective optimization or aim to obtain a tradeoff solution for multiple objectives by simply setting weight values. In this paper, a multi-objective optimization model is built to minimize the average energy consumption, time and cost while satisfying the constraint of bandwidth. Furthermore, an improved multi-objective optimization algorithm called D-NSGA-II-ELS is presented to get Pareto solutions with better convergence and diversity. Compared to other existing works, the simulation results show that the proposed algorithm can achieve better performance in terms of energy consumption, time and cost while satisfying the constraint of the bandwidth.

Approximation Algorithm for Multi Agents-Multi Tasks Assignment with Completion Probability (작업 완료 확률을 고려한 다수 에이전트-다수 작업 할당의 근사 알고리즘)

  • Kim, Gwang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.61-69
    • /
    • 2022
  • A multi-agent system is a system that aims at achieving the best-coordinated decision based on each agent's local decision. In this paper, we consider a multi agent-multi task assignment problem. Each agent is assigned to only one task and there is a completion probability for performing. The objective is to determine an assignment that maximizes the sum of the completion probabilities for all tasks. The problem, expressed as a non-linear objective function and combinatorial optimization, is NP-hard. It is necessary to design an effective and efficient solution methodology. This paper presents an approximation algorithm using submodularity, which means a marginal gain diminishing, and demonstrates the scalability and robustness of the algorithm in theoretical and experimental ways.

Multi-Objective Optimization of Electromagnetic Device Based on Design Sensitivity Analysis and Reliability Analysis (설계 민감도와 신뢰도 분석에 근거한 전자기기의 다목적 최적화)

  • Ren, Ziyan;Zhang, Dianhai;Park, Chanhyuk;Koh, Chang Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.49-56
    • /
    • 2013
  • In this paper, for constrained optimization problem, one multi-objective optimization algorithm that ensures both performance robustness and constraint feasibility is proposed when uncertainties are involved in design variables. In the proposed algorithm, the gradient index of objective function assisted by design sensitivity with the help of finite element method is applied to evaluate robustness; the reliability calculated by the sensitivity-assisted Monte Carlo simulation method is used to assess the feasibility of constraint function. As a demonstration, the performance and numerical efficiency of the proposed method is investigated through application to the optimal design of TEAM problem 22--a superconducting magnetic energy storage system.

A Study on the Optimum Structural Design for Oil Tankers Using Multi-Objective Optimization

  • Jang, Chang-Doo;Shin, Sang-Hun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.245-253
    • /
    • 1998
  • Recently, the importance of multi-objective optimization techniques and stochastic search methods is increasing. The stochastic search methods have the concepts of the survival of the fittest and natural selection such as genetic algorithms(GA), simulated annealing(SA) and evolution strategies (ES). As many accidents of oil tankers cause marine pollution, oil tankers of double hull or mid deck structure are being built to minimize the marine pollution. For the improvement of oil tanker design technique, an efficient optimization technique is proposed in this study. Multi-objective optimization problem of weight and cost of double hull and mid deck tanker is formulated. Discrete design variables are used considering real manufacturing, and the concept of relative production cost is also introduced. The ES method is used as an optimization technique, and the ES algorithm was developed to generate a more efficient Pareto optimal set.

  • PDF

Multi-Objective Optimization of Flexible Wing using Multidisciplinary Design Optimization System of Aero-Non Linear Structure Interaction based on Support Vector Regression (Support Vector Regression 기반 공력-비선형 구조해석 연계시스템을 이용한 유연날개 다목적 최적화)

  • Choi, Won;Park, Chan-Woo;Jung, Sung-Ki;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.601-608
    • /
    • 2015
  • The static aeroelastic analysis and optimization of flexible wings are conducted for steady state conditions while both aerodynamic and structural parameters can be used as optimization variables. The system of multidisciplinary design optimization as a robust methodology to couple commercial codes for a static aeroelastic optimization purpose to yield a convenient adaptation to engineering applications is developed. Aspect ratio, taper ratio, sweepback angle are chosen as optimization variables and the skin thickness of the wing. The real-coded adaptive range multi-objective genetic algorithm code, which represents the global multi-objective optimization algorithm, was used to control the optimization process. The support vector regression(SVR) is applied for optimization, in order to reduce the time of computation. For this multi-objective design optimization problem, numerical results show that several useful Pareto optimal designs exist for the flexible wing.

Multi-Objective Integrated Optimal Design of Hybrid Structure-Damper System Satisfying Target Reliability (목표신뢰성을 만족하는 구조물-감쇠기 복합시스템의 다목적 통합최적설계)

  • Ok, Seung-Yong;Park, Kwan-Soon;Song, Jun-Ho;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.9-22
    • /
    • 2008
  • This paper presents an integrated optimal design technique of a hybrid structure-damper system for improving the seismic performance of the structure. The proposed technique corresponds to the optimal distribution of the stiffness and dampers. The multi-objective optimization technique is introduced to deal with the optimal design problem of the hybrid system, which is reformulated into the multi-objective optimization problem with a constraint of target reliability in an efficient manner. An illustrative example shows that the proposed technique can provide a set of Pareto optimal solutions embracing the solutions obtained by the conventional sequential design method and single-objective optimization method based on weighted summation scheme. Based on the stiffness and damping capacities, three representative designs are selected among the Pareto optimal solutions and their seismic performances are investigated through the parametric studies on the dynamic characteristics of the seismic events. The comparative results demonstrate that the proposed approach can be efficiently applied to the optimal design problem for improving the seismic performance of the structure.