• 제목/요약/키워드: multi-objective design optimization

검색결과 477건 처리시간 0.029초

유전알고리즘을 이용한 액체로켓엔진 설계 최적화 (Design Optimization of Liquid Rocket Engine Using Genetic Algorithms)

  • 이상복;임태규;노태성
    • 한국추진공학회지
    • /
    • 제16권2호
    • /
    • pp.25-33
    • /
    • 2012
  • 유전알고리즘을 사용하여 액체로켓엔진의 연소실 압력과 노즐 확장비, O/F 비 등 주요 설계변수를 최적화하였다. 대상엔진은 LO2/RP-1을 추진제로 사용하는 개방형 가스발생기 사이클을 대상으로 하였다. 연소실의 물성치는 CEA2를 이용하였으며, 무게 산출은 참고문헌을 바탕으로 모델링 하였다. 최적 설계의 목적함수는 비추력과 추력중량비를 다중목표로 설정하여 가중치 방법을 사용하였다. 유전알고리즘을 최적화 과정을 거친 결과 비추력은 최대 4%, 추력중량비는 최대 23% 정도 증가하였다. 또한 다양한 추력에 대해서 Pareto frontier line을 얻었다.

유전알고리즘을 이용한 액체로켓엔진 설계변수 최적화 (Design Parameter Optimization of Liquid Rocket Engine Using Generic Algorithms)

  • 이상복;김영호;노태성
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.127-134
    • /
    • 2011
  • 유전알고리즘을 사용하여 액체로켓엔진의 연소실 압력과 노즐 확장비, O/F 비 등 주요 설계변수를 최적화하였다. 대상엔진은 LO2/RP-1을 추진제로 사용하는 개방형 가스발생기 사이클을 대상으로 하였다. 연소실의 물성치는 CEA2를 이용하였으며, 무게 산출은 참고문헌을 바탕으로 모델링 하였다. 최적설계의 목적함수는 비추력과 추력중량비를 다중목표로 설정하여 가중치 방법을 사용하였다. 유전알고리즘을 최적화 과정을 거친 결과 비추력은 최대 4%, 추력중량비는 최대 23% 정도 증가하였다. 또한 다양한 추력에 대해서 Pareto frontier line을 얻었다.

  • PDF

Optimal Design of Detention System using Incremental Dynamic Programming

  • Lee, Kil-Seong;Lee, Beum-Hee
    • Korean Journal of Hydrosciences
    • /
    • 제7권
    • /
    • pp.61-75
    • /
    • 1996
  • The purpose of this study is to develop an efficient model for the least cost design of multi-site detention systems. The IDP (Incremental Dynamic Programming) model for optimal design is composed of two sub-models : hydrologic-hydraulic model and optimization model. The objective function of IDP is the sum of costs ; acquisition cost of the land, construction cost of detention basin and pumping system. Model inputs include channel characteristics, hydrologic parameters, design storm, and cost function. The model is applied to the Jung-Rang Cheon basin in Seoul, a watershed with cetention basins in multiple branching channels. The application results show that the detention system can be designed reasonably for various conditions and the model can be applied to multi-site detention system design.

  • PDF

반응표면법을 이용한 다익 홴/스크롤 시스템의 설부에 대한 형상 최적화 (Shape Optimization of Cut-Off in a Multi-blade Fan/Scroll System Using Response Surface Method)

  • 한석영;맹주성;황영민
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.225-231
    • /
    • 2003
  • In order to improve efficiency of a system with three-dimensional flow characteristics, this paper presents a new method that overcomes three-dimensional effects by using two-dimensional CFD and response surface method. The method was applied to shape optimization of cut-off in a multi-blade fan/scroll system. As the entrance conditions of two-dimensional CFD, the experimental values at the positions out of the inactive zone were used. In order to examine the validity of the two-dimensional CFD the distributions of velocity and pressure obtained by two-dimensional CFD were compared with those of three-dimensional CFD and experimental results. It was found that the distributions of velocity and pressure show qualitatively similarity. The results of two-dimensional CFD were used for constructing the objective function with design variables using response surface method. The optimal angle and radius of cut-off were determined as $72.4^{\circ}$ and 0.092 times the outer diameter of impeller, respectively. It is quantified the previous report that the optimal angle and radius of cut-off are approximately $72^{\circ}$ and 0.08 times the outer diameter of impeller, respectively.

Propulsion System Design and Optimization for Ground Based Interceptor using Genetic Algorithm

  • Qasim, Zeeshan;Dong, Yunfeng;Nisar, Khurram
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.330-339
    • /
    • 2008
  • Ground-based interceptors(GBI) comprise a major element of the strategic defense against hostile targets like Intercontinental Ballistic Missiles(ICBM) and reentry vehicles(RV) dispersed from them. An optimum design of the subsystems is required to increase the performance and reliability of these GBI. Propulsion subsystem design and optimization is the motivation for this effort. This paper describes an effort in which an entire GBI missile system, including a multi-stage solid rocket booster, is considered simultaneously in a Genetic Algorithm(GA) performance optimization process. Single goal, constrained optimization is performed. For specified payload and miss distance, time of flight, the most important component in the optimization process is the booster, for its takeoff weight, time of flight, or a combination of the two. The GBI is assumed to be a multistage missile that uses target location data provided by two ground based RF radar sensors and two low earth orbit(LEO) IR sensors. 3Dimensional model is developed for a multistage target with a boost phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The monostatic radar cross section (RCS) data of a three stage ICBM is used. For preliminary design, GBI is assumed to have a fixed initial position from the target launch point and zero launch delay. GBI carries the Kill Vehicle(KV) to an optimal position in space to allow it to complete the intercept. The objective is to design and optimize the propulsion system for the GBI that will fulfill mission requirements and objectives. The KV weight and volume requirements are specified in the problem definition before the optimization is computed. We have considered only continuous design variables, while considering discrete variables as input. Though the number of stages should also be one of the design variables, however, in this paper it is fixed as three. The elite solution from GA is passed on to(Sequential Quadratic Programming) SQP as near optimal guess. The SQP then performs local convergence to identify the minimum mass of the GBI. The performance of the three staged GBI is validated using a ballistic missile intercept scenario modeled in Matlab/SIMULINK.

  • PDF

가중 다목적성을 고려한 구조물 응답 제어용 TMD의 RSM 기반 실용적 최적 설계 (RSM-based Practical Optimum Design of TMD for Control of Structural Response Considering Weighted Multiple Objectives)

  • 도정윤;국성오;김두기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권6호
    • /
    • pp.113-125
    • /
    • 2017
  • 본 연구는 전산실험을 통해 중규모 건물에 설치한 수동형 TMD의 매개변수에 대한 가중 다목적 최적화 설계를 다루고 있다. MATLAB으로 수치 시뮬레이션 코드를 작성함으로써 지진하중에 대한 동적응답을 파악하였으며 중심합성계획법과 반응표면법으로 구성한 전산실험을 기반으로 하는 가중 다목적 최적화 기법을 적용하여 TMD의 최적 동조 매개변수를 찾고자 하였다. 본 연구에서는 10층 건물을 대상으로 El Centro를 벤치마크 지진으로 가진하여 반응모델을 생성하고, AHP를 이용하여 반응변수 사이의 상대적 중요도를 산출한 후 가중다목적최적화 설계를 실시하였다. 본 연구의 방법으로 최적화된 매개변수를 가진 TMD는 지진 응답을 효과적으로 저감하였다. El Centro 지진이 작용하는 경우 RSM 기반 가중 다목적 최적설계방법으로 최적화한 TMD의 진동수 응답과 최상층 평균제곱변위는 비제진시보다 각각 31.6%와 82.3% 향상되었고, 모든 적용 지진에서 기존 설계법보다 동등 또는 이상의 성능을 가진 것으로 확인되었다.

퍼멀로이 실딩캔의 강성증대 및 형상 정밀도를 위한 최적 헤밍 공정설계 (Hemming Process Design of the Permalloy Shielding Can for the Stiffness and Shape Accuracy)

  • 이선봉;김동환;김병민
    • 한국정밀공학회지
    • /
    • 제19권5호
    • /
    • pp.29-35
    • /
    • 2002
  • This study shows the process design and forming analysis of permalloy shielding can that support the automobile multi-display parts to indicate the accurate information of car. This study is particularly important, since the accuracy of permalloy shielding can is known to affect the magnetic properties such as coercivity and permeability quite sensitively. The objective functions are defects such as hemming wind, hemming length, hemming wrap and tightness in prehemming process. The pre-hemming angle is considered as design parameter. The commercial finite element program PAM-STAMP™ was used to simulate the pre-hemming and hemming process. The ANN (Artificial Neural Network) has been implemented for minimizing of objective function and for investigating effect of punch angle relevant to the pre-hemming process. The results of analysis to validate the proposed design method are presented.

인공생명 알고리듬에 의한 고속, 소폭 저널베어링의 최적설계 (Optimum Design of High-Speed, Short Journal Bearings by Artificial Life Algorithm)

  • 이윤희;양보석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.324-332
    • /
    • 1999
  • This paper presents the artificial life algorithm which is remarkable in the area of engineering for optimum design. As artificial life organisms have a sensing system, they can find the resource which they want to find and metabolize it. And the characteristics of artificial life are emergence and dynamical interacting with environment. In other words, the micro interaction with each other in the artificial life's group results in emergent colonization in the whole system. In this paper, therefore, artificial life algorithm by using above characteristics is employed into functions optimization. The effectiveness of this proposed algorithm is verified through the numerical test of single and multi objective functions. The numerical tests also show that the proposed algorithm is superior to genetic algorithm and immune algorithm for the Multi-peak function. And artificial life algorithm is also applied to optimum design of high-speed, short journal bearings and verified through the numerical test.

  • PDF

Optimal Rotor Shape Design of Asymmetrical Multi-Layer IPM Motors to Improve Torque Performance Considering Irreversible Demagnetization

  • Mirazimi, M.S.;Kiyoumarsi, A.;Madani, Sayed M.
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1980-1990
    • /
    • 2017
  • A study on the multi-objective optimization of Interior Permanent-Magnet Synchronous Motors (IPMSMs) with 2, 3, 4 and 5 flux barriers per magnetic pole, based on Genetic Algorithm (GA) is presented by considering the aspect of irreversible demagnetization. Applying the 2004 Toyota Prius single-layer IPMSM as the reference machine, the asymmetrical two-, three-, four- and five-layer rotor models with the same amount of Permanent-Magnets (PMs) is presented to improve the torque characteristics, i.e., reducing the torque pulsation and increasing the average torque. A reduction of the torque pulsations is achieved by adopting different and asymmetrical flux barrier geometries in each magnetic pole of the rotor topology. The demagnetization performance in the PMs is considered as well as the motor performance; and analyzed by using finite element method (FEM) for verification of the optimal solutions.

다중 제한 조건을 고려한 강인 트랙 추종 제어기의 설계 (Design of a Robust Track-following Controller with Multiple Constraints)

  • 진경복;김진수;이문노
    • 한국소음진동공학회논문집
    • /
    • 제14권9호
    • /
    • pp.827-836
    • /
    • 2004
  • In this paper, we design a robust multi-objective track-following controller that satisfies transient response specifications and diminishes the influence of sinusoidal disturbance. To this end, a robust control problem with the multiple constraints is considered. We show that a sufficient condition satisfying the robust control problem can be expressed by linear matrix inequalities. Finally, the robust track-following controller can be designed by solving an LMI optimization problem. The effectiveness of the proposed controller design method is verified though experiments.