• Title/Summary/Keyword: multi-objective design optimization

Search Result 476, Processing Time 0.026 seconds

Energy absorption characteristics of diamond core columns under axial crushing loads

  • Azad, Nader Vahdat;Ebrahimi, Saeed
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.605-628
    • /
    • 2016
  • The energy absorption characteristics of diamond core sandwich cylindrical columns under axial crushing process depend greatly on the amount of material which participates in the plastic deformation. Both the single-objective and multi-objective optimizations are performed for columns under axial crushing load with core thickness and helix pitch of the honeycomb core as design variables. Models are optimized by multi-objective particle swarm optimization (MOPSO) algorithm to achieve maximum specific energy absorption (SEA) capacity and minimum peak crushing force (PCF). Results show that optimization improves the energy absorption characteristics with constrained and unconstrained peak crashing load. Also, it is concluded that the aluminum tube has a better energy absorption capability rather than steel tube at a certain peak crushing force. The results justify that the interaction effects between the honeycomb and column walls greatly improve the energy absorption efficiency. A ranking technique for order preference (TOPSIS) is then used to sort the non-dominated solutions by the preference of decision makers. That is, a multi-criteria decision which consists of MOPSO and TOPSIS is presented to find out a compromise solution for decision makers. Furthermore, local and global sensitivity analyses are performed to assess the effect of design variable values on the SEA and PCF functions in design domain. Based on the sensitivity analysis results, it is concluded that for both models, the helix pitch of the honeycomb core has greater effect on the sensitivity of SEA, while, the core thickness has greater effect on the sensitivity of PCF.

Multi-objective Optimization of Marine 3/2WAY Pneumatic Valve using Compromise Decision-Making Method (절충의사결정방법을 이용한 선박용 3/2WAY 공압밸브의 다목적 최적설계)

  • Kim, Jun-Oh;Baek, Seok-Heum;Kim, Tae-Woo;Kang, Sangmo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.81-90
    • /
    • 2013
  • A study on the flow-structure characteristics of marine 3/2WAY pneumatic valve is essential for optimizing the performance of ship engines. It is important that the valve has desirable safety factor and reduced weight from safety and economic point of view. In this paper, flow-structure characteristics of pneumatic valve is obtained by being optimized based on the proper design criteria. The air with the pressure of 30 bar is the working fluid which is made to fill in the tack in short time. This time is defined as the filling time. On optimum design by considering the flow-structure characteristics, the approach is based on (1) the mathematical formulation of design decisions using the compromise decision-making method, and (2) the approximation technique of response surfaces. The methodology is demonstrated as the multi-objective optimization tool to improve the performance of marine 3/2WAY pneumatic valve.

Cooperative Path Planning of Dynamical Multi-Agent Systems Using Differential Flatness Approach

  • Lian, Feng-Li
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.401-412
    • /
    • 2008
  • This paper discusses a design methodology of cooperative path planning for dynamical multi-agent systems with spatial and temporal constraints. The cooperative behavior of the multi-agent systems is specified in terms of the objective function in an optimization formulation. The path of achieving cooperative tasks is then generated by the optimization formulation constructed based on a differential flatness approach. Three scenarios of multi-agent tasking are proposed at the cooperative task planning framework. Given agent dynamics, both spatial and temporal constraints are considered in the path planning. The path planning algorithm first finds trajectory curves in a lower-dimensional space and then parameterizes the curves by a set of B-spline representations. The coefficients of the B-spline curves are further solved by a sequential quadratic programming solver to achieve the optimization objective and satisfy these constraints. Finally, several illustrative examples of cooperative path/task planning are presented.

Differential Evolution Algorithms Solving a Multi-Objective, Source and Stage Location-Allocation Problem

  • Thongdee, Thongpoon;Pitakaso, Rapeepan
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.1
    • /
    • pp.11-21
    • /
    • 2015
  • The purpose of this research is to develop algorithms using the Differential Evolution Algorithm (DE) to solve a multi-objective, sources and stages location-allocation problem. The development process starts from the design of a standard DE, then modifies the recombination process of the DE in order improve the efficiency of the standard DE. The modified algorithm is called modified DE. The proposed algorithms have been tested with one real case study (large size problem) and 2 randomly selected data sets (small and medium size problems). The computational results show that the modified DE gives better solutions and uses less computational time than the standard DE. The proposed heuristics can find solutions 0 to 3.56% different from the optimal solution in small test instances, while differences are 1.4-3.5% higher than that of the lower bound generated by optimization software in medium and large test instances, while using more than 99% less computational time than the optimization software.

Life-cycle cost optimization of steel moment-frame structures: performance-based seismic design approach

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.271-294
    • /
    • 2014
  • In recent years, along with the advances made in performance-based design optimization, the need for fast calculation of response parameters in dynamic analysis procedures has become an important issue. The main problem in this field is the extremely high computational demand of time-history analyses which may convert the solution algorithm to illogical ones. Two simplifying strategies have shown to be very effective in tackling this problem; first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication, second, wavelet analysis of earthquake records decreasing the number of acceleration points involved in time-history loading. In this paper, we try to develop an efficient framework, using both strategies, to solve the performance-based multi-objective optimal design problem considering the initial cost and the seismic damage cost of steel moment-frame structures. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency (FEMA) recommended design specifications. The results from numerical application of the proposed framework demonstrate the capabilities of the framework in solving the present multi-objective optimization problem.

A modified particle swarm approach for multi-objective optimization of laminated composite structures

  • Sepehri, A.;Daneshmand, F.;Jafarpur, K.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.335-352
    • /
    • 2012
  • Particle Swarm Optimization (PSO) is a stochastic population based optimization algorithm which has attracted attentions of many researchers. This method has great potentials to be applied to many optimization problems. Despite its robustness the standard version of PSO has some drawbacks that may reduce its performance in optimization of complex structures such as laminated composites. In this paper by suggesting a new variation scheme for acceleration parameters and inertial weight factors of PSO a novel optimization algorithm is developed to enhance the basic version's performance in optimization of laminated composite structures. To verify the performance of the new proposed method, it is applied in two multi-objective design optimization problems of laminated cylindrical. The numerical results from the proposed method are compared with those from two other conventional versions of PSO-based algorithms. The convergancy of the new algorithms is also compared with the other two versions. The results reveal that the new modifications inthe basic forms of particle swarm optimization method can increase its convergence speed and evade it from local optima traps. It is shown that the parameter variation scheme as presented in this paper is successful and can evenfind more preferable optimum results in design of laminated composite structures.

A Multi-Objective Optimization Framework for Conceptual Design of a Surface-to-Surface Missile System (지대지 유도탄 체계 개념설계를 위한 다목적 최적화 프레임워크)

  • Lee, Jong-Sung;Ahn, Jae-myung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.460-467
    • /
    • 2019
  • This paper proposes a multi-objective optimization (MOO) framework for conceptual design of a surface-to-surface missile system. It can generate the set of Pareto optimal system design, which can be used for system trade-off study in a very early stage of the research and development process. The proposed framework consists of four functional modules (an environmental setting module, a variable setting module, a multidisciplinary analysis module and an optimization module) to make the model easy to change, and the concept design process using the framework was able to achieve the purpose of reviewing various designs in the early stage of development. A case study demonstrating the effectiveness of the framework has presented applicability to the system design, and the proposed framework has contributed to presenting a design environment that can ensure reliability and reduce computational time in the conceptual design stage.

A multi-objective optimization framework for optimally designing steel moment frame structures under multiple seismic excitations

  • Ghasemof, Ali;Mirtaheri, Masoud;Mohammadi, Reza Karami;Salkhordeh, Mojtaba
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.35-57
    • /
    • 2022
  • This article presents a computationally efficient framework for multi-objective seismic design optimization of steel moment-resisting frame (MRF) structures based on the nonlinear dynamic analysis procedure. This framework employs the uniform damage distribution philosophy to minimize the weight (initial cost) of the structure at different levels of damage. The preliminary framework was recently proposed by the authors based on the single excitation and the nonlinear static (pushover) analysis procedure, in which the effects of record-to-record variability as well as higher-order vibration modes were neglected. The present study investigates the reliability of the previous framework by extending the proposed algorithm using the nonlinear dynamic design procedure (optimization under multiple ground motions). Three benchmark structures, including 4-, 8-, and 12-story steel MRFs, representing the behavior of low-, mid-, and high-rise buildings, are utilized to evaluate the proposed framework. The total weight of the structure and the maximum inter-story drift ratio (IDRmax) resulting from the average response of the structure to a set of seven ground motion records are considered as two conflicting objectives for the optimization problem and are simultaneously minimized. The results of this study indicate that the optimization under several ground motions leads to almost similar outcomes in terms of optimization objectives to those are obtained from optimization under pushover analysis. However, investigation of optimal designs under a suite of 22 earthquake records reveals that the damage distribution in buildings designed by the nonlinear dynamic-based procedure is closer to the uniform distribution (desired target during the optimization process) compared to those designed according to the pushover procedure.

Multiobjective size and topolgy optimization of dome structures

  • Tugrul, Talaslioglu
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.795-821
    • /
    • 2012
  • The size and topology of geometrically nonlinear dome structures are optimized thereby minimizing both its entire weight & joint (node) displacements and maximizing load-carrying capacity. Design constraints are implemented from provisions of American Petroleum Institute specification (API RP2A-LRFD). In accordance with the proposed design constraints, the member responses computed by use of arc-length technique as a nonlinear structural analysis method are checked at each load increment. Thus, a penalization process utilized for inclusion of unfeasible designations to genetic search is correspondingly neglected. In order to solve this complex design optimization problem with multiple objective functions, Non-dominated Sorting Genetic Algorithm II (NSGA II) approach is employed as a multi-objective optimization tool. Furthermore, the flexibility of proposed optimization is enhanced thereby integrating an automatic dome generating tool. Thus, it is possible to generate three distinct sphere-shaped dome configurations with varying topologies. It is demonstrated that the inclusion of brace (diagonal) members into the geometrical configuration of dome structure provides a weight-saving dome designation with higher load-carrying capacity. The proposed optimization approach is recommended for the design optimization of geometrically nonlinear dome structures.

Multi-objective Optimization of Channel Quality and Power Consumption in Visible Light Communication Systems (다목적함수 최적화기법을 이용한 가시광 무선통신시스템의 통신채널품질 및 전력소비 최적화 연구)

  • Dotronghop, Dotronghop;Hwang, Junho;Yoo, Myungsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.11-17
    • /
    • 2012
  • The VLC system undertakes both missions of illumination and wireless communication. It is difficult to design a VLC system with optimal performance due to the trade-offs between power consumption and channel quality. In this paper, the VLC system design problem is solved by using multi-objective optimization method. For optimization, the multi-objective function is formulated with respect to power consumption, received power, and SNR under the constraints on the system variables. Through the multi-objective optimization, it is possible to obtain the solutions that satisfies both minimum power consumption and maximum channel quality.