• Title/Summary/Keyword: multi-mode vibration

Search Result 235, Processing Time 0.025 seconds

Property of Multi-Dirction Mount Using Magneto-Rheological Fluid (MR유체를 이용한 다방향 제진형 마운트의 응답특성)

  • Ahn, Young-Kong;Sin, Dong-Choon;Yang, Bo-Suk;Lee, Il-Young;Kim, Dong-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.187-189
    • /
    • 2002
  • This paper presents property of the squeeze mode type mount using Magneto-Rheological fluid(MR fluid). The mount can isolate multi-directional vibrations, and also effectively reduce the vibrations in a wide range of disturbance frequencies by controlling the applied magnetic field. The shape of the mount is the same that of squeeze film damper. In the present work, the performance of this mount was experimentally investigated according to changing the magnetic field strength.

  • PDF

Property of Multi-Direction Mount Using Magneto-Rheological Fluid (MR유체를 이용한 다방향 제진형 마운트의 응답특성)

  • Ahn, Young-Kong;Sin, Dong-Choon;Yag, Bo-Suk;Kim, Dong-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.325.1-325
    • /
    • 2002
  • This paper presents property of the squeeze mode type mount using Magneto-Rheological fluid (MR fluid). The mount can isolate multi-directional vibrations, and also effectively reduce the vibrations in a wide range of disturbance frequency by controling the applied magnetic field. The shape of the mount is the same that of squeeze film damper. In the present work, the performance of this mount was experimentally investigated according to changing the magnetic field strength. (omitted)

  • PDF

Numerical procedure for the vibration analysis of arbitrarily constrained stiffened panels with openings

  • Cho, Dae Seung;Vladimir, Nikola;Choi, Tae Muk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.763-774
    • /
    • 2014
  • A simple and efficient vibration analysis procedure for stiffened panels with openings and arbitrary boundary conditions based on the assumed mode method is presented. Natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion, where Mindlin theory is applied for plate and Timoshenko beam theory for stiffeners. The effect of stiffeners on vibration response is taken into account by adding their strain and kinetic energies to the corresponding plate energies whereas the strain and kinetic energies of openings are subtracted from the plate energies. Different stiffened panels with various opening shapes and dispositions for several combinations of boundary conditions are analyzed and the results show good agreement with those obtained by the finite element analysis. Hence, the proposed procedure is especially appropriate for use in the preliminary design stage of stiffened panels with openings.

Flexural free vibration of cantilevered structures of variable stiffness and mass

  • Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.3
    • /
    • pp.243-256
    • /
    • 1999
  • Using appropriate transformations, the differential equation for flexural free vibration of a cantilever bar with variably distributed mass and stiffness is reduced to a Bessel's equation or an ordinary differential equation with constant coefficients by selecting suitable expressions, such as power functions and exponential functions, for the distributions of stiffness and mass. The general solutions for flexural free vibration of one-step bar with variable cross-section are derived and used to obtain the frequency equation of multi-step cantilever bars. The new exact approach is presented which combines the transfer matrix method and closed form solutions of one step bars. Two numerical examples demonstrate that the calculated natural frequencies and mode shapes of a 27-storey building and a television transmission tower are in good agreement with the corresponding experimental data. It is also shown through the numerical examples that the selected expressions are suitable for describing the distributions of stiffness and mass of typical tall buildings and high-rise structures.

Disturbance Observer Based Sliding Mode Control for Multi-DOF Active Magnetic Bearing System Subject to Base Motion (베이스 운동을 받는 다자유도 능동자기베어링계에서 외란 관측기 기반 슬라이딩모드 제어)

  • 강민식
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1182-1194
    • /
    • 2004
  • This paper addresses the application of an active magnetic bearing (AMB) system to levitate the elevation axis of an electro-optical sight mounted on a moving vehicle. In this type of system, it is desirable to retain the elevation axis in an air-gap between magnetic bearing stators while the vehicle is moving. To eliminate disturbance responses, a disturbance observer based sliding mode control is developed. This control can decouple disturbance observation dynamics from sliding mode dynamics and preserves the robustness of the sliding control. The sliding surfaces are designed in the consideration of scattering of received image. The proposed control is applied to a 2-DOF active magnetic bearing system subject to base motion. Along with experimental results, the feasibility of the proposed technique is illustrated.

Nanoscale Nonlinear Dynamics of Carbon Nanotube Probe Tips (탄소나노튜브 탐침의 나노 비선형 동역학)

  • 이수일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.83-86
    • /
    • 2004
  • Carbon nanotube (CNT) tips in tapping mode atomic force microscopy (AFM) enable very high-resolution imaging, measurements, and manipulation at the nanoscale. We present recent results based on experimental analysis that yield new insights into the dynamics of CNT probe tips in tapping mode AFM. Experimental measurements are presented of the frequency response and dynamic amplitude-distance data of a high-aspect-ratio multi-walled (MW) CNT tip to demonstrate the non-linear features including tip amplitude saturation preceding the dynamic buckling of the MWCNT. Surface scanning is performed using a MWCNT tip on a SiO$_2$ grating to verify the imaging instabilities associated with MWCNT buckling when used with normal control schemes in the tapping mode. Lastly, the choice of optimal setpoints for tapping mode control using CNT probe tip are discussed using the experimental results.

  • PDF

Design and Fabrication of Linear-Type Ultrasonic Motor using Ll-B4 Vibration Mode (Ll-B4 진동모드를 이용한 linear-Type Ultrasonic Motor의 설계 및 시작)

  • 이종섭;임기조;정수현;정중기;임태빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.29-32
    • /
    • 1998
  • A plate-type ultrasonic linear motor using longitudinal and bending multi-vibration mode was designed and fabricated for card-forwarding device. The rotor consisted of piezoelectric ceramic plate and elastic materials. The performances of the motor were measured. As the experimental results, no-load speed of the motor was 0.6 m/s at 80 V in applied voltage. Starting torque was 1.4 mNm and maximum efficiency was 1.2 %.

  • PDF

Design and Trial Fabrication of Plate-Type Linear Ultrasonic Motor Using L1-B4 Vibration Mode (L1-B4 진동모드를 이용한 평판형 선형 초음파 모터의 설계 및 시제작)

  • 이종섭;정수현;임기조;임태빈;강성택;채홍인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.861-865
    • /
    • 1998
  • A plate-type linear ultrasonic motor using logitudinal and bending multi-vibration mode was designed and fabricated for the application to card-forwarding device. The stator consisted of PZ-PT-PMS piezoelectric ceramic plate and stainless steel. The performances of the motor were measured. As the experimental results, no-load speed of the motor was 0.6m/s when applied voltage was $80\textrm{V}_{rms}$ in resonance frequency. Starting torque was 1.4 mNm and maximum efficiency was 1.2%.

  • PDF

Influence of different parameters on nonlinear friction-induced vibration characteristics of water lubricated stern bearings

  • Lin, Chang-Gang;Zou, Ming-Song;Zhang, Hai-Cheng;Qi, Li-Bo;Liu, Shu-Xiao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.746-757
    • /
    • 2021
  • To investigate the mechanism of friction-induced vibration and noise of ship water lubricated stern bearings, a two-degree-of-freedom (2-DOF) nonlinear self-excited vibration model is established. The novelty of this work lies in the detailed analysis of influence of different parameters on the stability and nonlinear vibration characteristics of the system, which provides a theoretical basis for the various friction vibration and noise phenomenon and has a very important directive meaning for low noise design of water lubricated stern bearings. The results reveal that the change of any parameter, such as rotating speed of shaft, contact pressure, friction coefficient, system damping and stiffness, has an important influence on the stability and nonlinear response of the system. The vibration amplitudes of the system increase as (a) rotating speed of shaft, contact pressure, and the ratio of static friction coefficient to dynamic friction coefficient increase and (b) the transmission damping between motor and shaft decreases. The frequency spectrum of the system is modulated by the first mode natural frequency, which is continuous multi-harmonics of the first mode natural frequency. The response of the system presents a quasi-periodic motion.

Out-of-plane vibration of multi-span curved beam due to moving loads

  • Wang, Rong-Tyai;Sang, Yiu-Lo
    • Structural Engineering and Mechanics
    • /
    • v.7 no.4
    • /
    • pp.361-375
    • /
    • 1999
  • This paper presents an analytic method of examining the out-of-plane vibration of continuous curved beam on periodical supports. The orthogonality of two distinct sets of mode shape functions is derived. The forced vibration of beam due to moving loads is examined. Two types of moving loads, which are concentrated load and uniformly distributed load, are considered. The response characteristics of beam induced by these loads are investigated as well.