• Title/Summary/Keyword: multi-mode approach

Search Result 129, Processing Time 0.024 seconds

Numerical Investigation of Multi-body Wave Energy Converters' Configuration

  • Heo, Kyeonguk;Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.132-142
    • /
    • 2022
  • We investigate the performance of multi-body wave energy converters (WECs). This investigation considers multiple scattering of water waves by the buoys of a WEC under the generalized mode approach. Predominantly, the effect of a WEC's configuration on its energy extraction is studied in this research. First, single-row terminator and single-column attenuator arrays of vertical cylinders have been studied. The performance of these attenuator arrays shows that the wall effect induced by the periodic buoys influences the wave propagation and energy extraction in these WECs. Further studies show that a single-row terminator array of vertical cylinders performs better than the corresponding single-column attenuator array. Subsequently, multi-row terminator arrays of vertical cylinders are investigated by conducting a parametric study. This parametric study shows that the hydrodynamic property of three resonance phenomena makes energy extraction efficiency drop down, and the magnitude of energy extracted oscillates between the resonance points in these WECs. Finally, a 4×8 terminator array of vertical cylinders is studied to determine the effect of various dx (x-directional distance between adjacent rows) within this WEC on its performance. In particular, this study enforces at least two equal dx values within the 4×8 terminator array of vertical cylinders. It shows that a small value of this dx leads to better energy extraction efficiency in some of these various dx arrays than that of a corresponding regular array with the same dx.

Ultrasonic guided wave approach incorporating SAFE for detecting wire breakage in bridge cable

  • Zhang, Pengfei;Tang, Zhifeng;Duan, Yuanfeng;Yun, Chung Bang;Lv, Fuzai
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.481-493
    • /
    • 2018
  • Ultrasonic guided waves have attracted increasing attention for non-destructive testing (NDT) and structural health monitoring (SHM) of bridge cables. They offer advantages like single measurement, wide coverage of acoustical field, and long-range propagation capability. To design defect detection systems, it is essential to understand how guided waves propagate in cables and how to select the optimal excitation frequency and mode. However, certain cable characteristics such as multiple wires, anchorage, and polyethylene (PE) sheath increase the complexity in analyzing the guided wave propagation. In this study, guided wave modes for multi-wire bridge cables are identified by using a semi-analytical finite element (SAFE) technique to obtain relevant dispersion curves. Numerical results indicated that the number of guided wave modes increases, the length of the flat region with a low frequency of L(0,1) mode becomes shorter, and the cutoff frequency for high order longitudinal wave modes becomes lower, as the number of steel wires in a cable increases. These findings were used in design of transducers for defect detection and selection of the optimal wave mode and frequency for subsequent experiments. A magnetostrictive transducer system was used to excite and detect the guided waves. The applicability of the proposed approach for detecting and locating wire breakages was demonstrated for a cable with 37 wires. The present ultrasonic guided wave method has been found to be very responsive to the number of brokenwires and is thus capable of detecting defects with varying sizes.

Dynamic Association and Natural Interaction for Multi-Displays Using Smart Devices (다수의 스마트 디바이스를 활용한 멀티 디스플레이 동적 생성 및 인터랙션)

  • Kim, Minseok;Lee, Jae Yeol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.4
    • /
    • pp.337-347
    • /
    • 2015
  • This paper presents a dynamic association and natural interaction method for multi-displays composed of smart devices. Users can intuitively associate relations among smart devices by shake gestures, flexibly modify the layout of the display by tilt gestures, and naturally interact with the multi-display by multi-touch interactions. First of all, users shake their smart devices to create and bind a group for a multi-display with a matrix configuration in an ad-hoc and collaborative situation. After the creation of the group, if needed, their display layout can be flexibly changed by tilt gestures that move the tilted device to the nearest vacant cell in the matrix configuration. During the tilt gestures, the system automatically modifies the relation, view, and configuration of the multi-display. Finally, users can interact with the multi-display through multi-touch interactions just as they interact with a single large display. Furthermore, depending on the context or role, synchronous or asynchronous mode is available to them for providing a split view or another UI. We will show the effectiveness and advantages of the proposed approach by demonstrating implementation results and evaluating the method by the usability study.

Analysis on Decomposition Models of Univariate Hydrologic Time Series for Multi-Scale Approach

  • Kwon, Hyun-Han;Moon, Young-Il;Shin, Dong-Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1450-1454
    • /
    • 2006
  • Empirical mode decomposition (EMD) is applied to analyze time series characterized with nonlinearity and nonstationarity. This decomposition could be utilized to construct finite and small number intrinsic mode functions (IMF) that describe complicated time series, while admitting the Hilbert transformation properties. EMD has the capability of being adaptive, capture local characteristics, and applicable to nonlinear and nonstationary processes. Unlike discrete wavelet transform (DWT), IMF eliminates spurious harmonics and retains meaningful instantaneous frequencies. Examples based on data representing natural phenomena are given to demonstrate highlight the power of this method in contrast and comparison of other ones. A presentation of the energy-frequency-time distribution of these signals found to be more informative and intuitive when based on Hilbert transformation.

  • PDF

Vibration Characteristic Study of Bevel Geared System Using Transfer Matrix Method (전달행렬법을 이용한 베벨기어 시스템의 진동특성연구)

  • Lee, Hyoung-Woo;Bae, Myung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.118-126
    • /
    • 2008
  • A new approach to the critical speed calculation of general multi-mesh gear chain system included bevel gear is presented. A transfer matrix mode! based on Hibner's branch method is developed and the natural properties of the branched rotor system are calculated with using the ${\lambda}$-matrix formulation. A Campbell diagram, in which the excitation sources caused by the mass unbalance of the rotors, misalignment and the transmitted errors of the gearing are considered, shows that, at the neighborhood of the operating speed, there are the two critical speeds amplifying the first mode and the eighth mode.

Damage detection based on MCSS and PSO using modal data

  • Kaveh, Ali;Maniat, Mohsen
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1253-1270
    • /
    • 2015
  • In this paper Magnetic Charged System Search (MCSS) and Particle Swarm Optimization (PSO) are applied to the problem of damage detection using frequencies and mode shapes of the structures. The objective is to identify the location and extent of multi-damage in structures. Both natural frequencies and mode shapes are used to form the required objective function. To moderate the effect of noise on measured data, a penalty approach is applied. A variety of numerical examples including two beams and two trusses are considered. A comparison between the PSO and MCSS is conducted to show the efficiency of the MCSS in finding the global optimum. The results show that the present methodology can reliably identify damage scenarios using noisy measurements and incomplete data.

Optimal design of multiple tuned mass dampers for vibration control of a cable-supported roof

  • Wang, X.C.;Teng, Q.;Duan, Y.F.;Yun, C.B.;Dong, S.L.;Lou, W.J.
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.545-558
    • /
    • 2020
  • A design method of a Multiple Tuned Mass Damper (MTMD) system is presented for wind induced vibration control of a cable-supported roof structure. Modal contribution analysis is carried out to determine the dominating modes of the structure for the MTMD design. Two MTMD systems are developed for two most dominating modes. Each MTMD system is composed of multiple TMDs with small masses spread at multiple locations with large responses in the corresponding mode. Frequencies of TMDs are distributed uniformly within a range around the dominating frequencies of the roof structure to enhance the robustness of the MTMD system against uncertainties of structural frequencies. Parameter optimizations are carried out by minimizing objective functions regarding the structural responses, TMD strokes, robustness and mass cost. Two optimization approaches are used: Single Objective Approach (SOA) using Sequential Quadratic Programming (SQP) with multi-start method and Multi-Objective Approach (MOA) using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The computation efficiency of the MOA is found to be superior to the SOA with consistent optimization results. A Pareto optimal front is obtained regarding the control performance and the total weight of the TMDs, from which several specific design options are proposed. The final design may be selected based on the Pareto optimal front and other engineering factors.

Multi-objective structural optimization of spatial steel frames with column orientation and bracing system as design variables

  • Claudio H. B. de Resende;Luiz F. Martha;Afonso C. C. Lemonge;Patricia H. Hallak;Jose P. G. Carvalho;Julia C. Motta
    • Advances in Computational Design
    • /
    • v.8 no.4
    • /
    • pp.327-351
    • /
    • 2023
  • This article explores how multi-objective optimization techniques can be used to design cost-effective and structurally optimal spatial steel structures, highlighting that optimizing performance can be as important as minimizing costs in real-world engineering problems. The study includes the minimization of maximum horizontal displacement, the maximization of the first natural frequency of vibration, the maximization of the critical load factor concerning the first global buckling mode of the structure, and weight minimization as the objectives. Additionally, it outlines a systematic approach to selecting the best design by employing four different evolutionary algorithms based on differential evolution and a multi-criteria decision-making methodology. The paper's contribution lies in its comprehensive consideration of multiple conflicting objectives and its novel approach to simultaneous consideration of bracing system, column orientation, and commercial profiles as design variables.

Analytical free vibration solution for angle-ply piezolaminated plate under cylindrical bending: A piezo-elasticity approach

  • Singh, Agyapal;Kumari, Poonam
    • Advances in Computational Design
    • /
    • v.5 no.1
    • /
    • pp.55-89
    • /
    • 2020
  • For the first time, an accurate analytical solution, based on coupled three-dimensional (3D) piezoelasticity equations, is presented for free vibration analysis of the angle-ply elastic and piezoelectric flat laminated panels under arbitrary boundary conditions. The present analytical solution is applicable to composite, sandwich and hybrid panels having arbitrary angle-ply lay-up, material properties, and boundary conditions. The modified Hamiltons principle approach has been applied to derive the weak form of governing equations where stresses, displacements, electric potential, and electric displacement field variables are considered as primary variables. Thereafter, multi-term multi-field extended Kantorovich approach (MMEKM) is employed to transform the governing equation into two sets of algebraic-ordinary differential equations (ODEs), one along in-plane (x) and other along the thickness (z) direction, respectively. These ODEs are solved in closed-form manner, which ensures the same order of accuracy for all the variables (stresses, displacements, and electric variables) by satisfying the boundary and continuity equations in exact manners. A robust algorithm is developed for extracting the natural frequencies and mode shapes. The numerical results are reported for various configurations such as elastic panels, sandwich panels and piezoelectric panels under different sets of boundary conditions. The effect of ply-angle and thickness to span ratio (s) on the dynamic behavior of the panels are also investigated. The presented 3D analytical solution will be helpful in the assessment of various 1D theories and numerical methods.

Investigation on deck-stay interaction of cable-stayed bridges with appropriate initial shapes

  • Liu, Ming-Yi;Lin, Li-Chin;Wang, Pao-Hsii
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.691-709
    • /
    • 2012
  • This paper provides a variety of viewpoints to illustrate the mechanism of the deck-stay interaction with the appropriate initial shapes of cable-stayed bridges. Based on the smooth and convergent bridge shapes obtained by the initial shape analysis, the one-element cable system (OECS) and multi-element cable system (MECS) models of the Kao Ping Hsi Bridge in Taiwan are developed to verify the applicability of the analytical model and numerical formulation from the field observations in the authors' previous work. For this purpose, the modal analysis of the two finite element models are conducted to calculate the natural frequency and normalized mode shape of the individual modes of the bridge. The modal coupling assessment is also performed to obtain the generalized mass ratios among the structural components for each mode of the bridge. The findings indicate that the coupled modes are attributed to the frequency loci veering and mode localization when the "pure" deck-tower frequency and the "pure" stay cable frequency approach one another, implying that the mode shapes of such coupled modes are simply different from those of the deck-tower system or stay cables alone. The distribution of the generalized mass ratios between the deck-tower system and stay cables are useful indices for quantitatively assessing the degree of coupling for each mode. These results are demonstrated to fully understand the mechanism of the deck-stay interaction with the appropriate initial shapes of cable-stayed bridges.