• Title/Summary/Keyword: multi-linear model

Search Result 730, Processing Time 0.033 seconds

Multi -Criteria ABC Inventory Classification Using Context-Dependent DEA (컨텍스트 의존 DEA를 활용한 다기준 ABC 재고 분류 방법)

  • Park, Jae-Hun;Lim, Sung-Mook;Bae, Hye-Rim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.69-78
    • /
    • 2010
  • Multi-criteria ABC inventory classification is one of the most widely employed techniques for efficient inventory control, and it considers more than one criterion for categorizing inventory items into groups of different importance. Recently, Ramanathan (2006) proposed a weighted linear optimization (WLO) model for the problem of multi-criteria ABC inventory classification. The WLO model generates a set of criteria weights for each item and assigns a normalized score to each item for ABC analysis. Although the WLO model is considered to have many advantages, it has a limitation that many items can share the same optimal efficiency score. This limitation can hinder a precise classification of inventory items. To overcome this deficiency, we propose a context-dependent DEA based method for multi-criteria ABC inventory classification problems. In the proposed model, items are first stratified into several efficiency levels, and then the relative attractiveness of each item is measured with respect to less efficient ones. Based on this attractiveness measure, items can be further discriminated in terms of their importance. By a comparative study between the proposed model and the WLO model, we argue that the proposed model can provide a more reasonable and accurate classification of inventory items.

Heuristic Algorithm for Selecting Mutually Dependent Qualify Improvement Alternatives of Multi-Stage Manufacturing Process (다단계제조공정의 품질개선을 위한 종속대안선택 근사해법)

  • 조남호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.11 no.18
    • /
    • pp.7-15
    • /
    • 1988
  • This study is concerned with selecting mutually dependent quality improvement alternatives with resource constraints. These qualify improvement alternatives art different fro the tradition at alternatives which are independent from each other. In other words, selection of any improvement alternative requires other related specific improvement. Also the overall product quality in a multi stage manufacturing process is characterized by a complex multiplication method rather than a simple addition method which dose not allow to solve a linear knapsack problem despite its popularity in the traditional study. This study suggests a non-linear integer programming model for selecting mutually dependent quality improvement alternatives in multi-stage manufacturing process. In order to apply the model to selecting alternatives. This study also suggests a heuristic mode1 based on a dynamic programming model which is more practical than the non-linear integer programming model. The logic of the heuristic model enables 1) to estimate improvement effectiveness values on all improvement alternatives specifically defined for this study. 2) to arrange the effectiveness values in a descending order, and 3) to select the best one among the alternatives based on their forward and backward linkage relationships. This process repeats to selects other best alternatives within the resource constraints. This process is presented in a Computer programming in Appendix A. Alsc a numerical example of model application is presented in Chapter 4.

  • PDF

Study of Effect of Tractive Force on Bicycle Self-Stability (구동력을 고려한 자전거 안정성에 관한 연구)

  • Souh, Byung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1319-1326
    • /
    • 2012
  • This study focuses on the influence of tractive forces on the self-stability of a bicycle. The eigen-value analysis of the self-stability of a passive rider control linear bicycle model can be used to analyze the self-stability. A linear bicycle model with front and rear driving forces is developed. The influence of tractive forces on the self-stability is identified by using the developed model. A nonlinear multi-body bicycle model is used to confirm the results of the linear analysis.

Multi-scale heat conduction models with improved equivalent thermal conductivity of TRISO fuel particles for FCM fuel

  • Mouhao Wang;Shanshan Bu;Bing Zhou;Zhenzhong Li;Deqi Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1140-1151
    • /
    • 2023
  • Fully Ceramic Microencapsulated (FCM) fuel is emerging advanced fuel material for the future nuclear reactors. The fuel pellet in the FCM fuel is composed of matrix and a large number of TRistructural-ISOtopic (TRISO) fuel particles which are randomly dispersed in the SiC matrix. The minimum layer thickness in a TRISO fuel particle is on the order of 10-5 m, and the length of the FCM pellet is on the order of 10-2 m. Hence, the heat transfer in the FCM pellet is a multi-scale phenomenon. In this study, three multi-scale heat conduction models including the Multi-region Layered (ML) model, Multi-region Non-layered (MN) model and Homogeneous model for FCM pellet were constructed. In the ML model, the random distributed TRISO fuel particles and coating layers are completely built. While the TRISO fuel particles with coating layers are homogenized in the MN model and the whole fuel pellet is taken as the homogenous material in the Homogeneous model. Taking the results by the ML model as the benchmark, the abilities of the MN model and Homogenous model to predict the maximum and average temperature were discussed. It was found that the MN model and the Homogenous model greatly underestimate the temperature of TRISO fuel particles. The reason is mainly that the conventional equivalent thermal conductivity (ETC) models do not take the internal heat source into account and are not suitable for the TRISO fuel particle. Then the improved ETCs considering internal heat source were derived. With the improved ETCs, the MN model is able to capture the peak temperature as well as the average temperature at a wide range of the linear powers (165 W/cm~ 415 W/cm) and the packing fractions (20%-50%). With the improved ETCs, the Homogenous model is better to predict the average temperature at different linear powers and packing fractions, and able to predict the peak temperature at high packing fractions (45%-50%).

The optimal identification of nonlinear systems by means of Multi-Fuzzy Inference model (다중 퍼지 추론 모델에 의한 비선형 시스템의 최적 동정)

  • Jeong, Hoe-Yeol;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2669-2671
    • /
    • 2001
  • In this paper, we propose design a Multi-Fuzzy Inference model structure. In order to determine structure of the proposed Multi-Fuzzy Inference model, HCM clustering method is used. The parameters of membership function of the Multi-Fuzzy are identified by genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. We use simplified inference and linear inference as inference method of the proposed Multi-Fuzzy model and the standard least square method for estimating consequence parameters of the Multi-Fuzzy. Finally, we use some of numerical data to evaluate the proposed Multi-Fuzzy model and discuss about the usefulness.

  • PDF

Identification of Multi-Fuzzy Model by means of HCM Clustering and Genetic Algorithms (HCM 클러스터링과 유전자 알고리즘을 이용한 다중 퍼지 모델 동정)

  • 박호성;오성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.370-370
    • /
    • 2000
  • In this paper, we design a Multi-Fuzzy model by means of HCM clustering and genetic algorithms for a nonlinear system. In order to determine structure of the proposed Multi-Fuzzy model, HCM clustering method is used. The parameters of membership function of the Multi-Fuzzy ate identified by genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. We use simplified inference and linear inference as inference method of the proposed Multi-Fuzzy mode] and the standard least square method for estimating consequence parameters of the Multi-Fuzzy. Finally, we use some of numerical data to evaluate the proposed Multi-Fuzzy model and discuss about the usefulness.

  • PDF

A credit scoring model of a capital company's customers using genetic algorithm based integration of multiple classifiers (유전자알고리즘 기반 복수 분류모형 통합에 의한 캐피탈고객의 신용 스코어링 모형)

  • Kim Kap-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.279-286
    • /
    • 2005
  • The objective of this study is to suggest a credit scoring model of a capital company's customers by integration of multiple classifiers using genetic algorithm. For this purpose , an integrated model is derived in two phases. In first phase, three types of classifiers MLP (Multi-Layered Perceptron), RBF (Radial Basis Function) and linear models - are trained, in which each type has three ones respectively so htat we have nine classifiers totally. In second phase, genetic algorithm is applied twice for integration of classifiers. That is, after htree models are derived from each group, a final one is from these three, In result, our suggested model shows a superior accuracy to any single ones.

  • PDF

Optimized Allocation of Water for the Multi-Purpose Use in Agricultural Reservoirs (농업용 저수지의 다목적 이용을 위한 용수의 적정배분)

  • 신일선;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.3
    • /
    • pp.125-137
    • /
    • 1987
  • The purpose of this paper is to examine some difficulties in water management of agricultural reservoirs in Korea, for there are approximately more than 15,000 reservoirs which are now being utilized for the purpose of irrigation, along with the much amount of expenses and labors to be invested against droughts and floods periodically occurred. Recently, the effective use of water resources in the agricultural reservoirs with a single purpose, is becomming multiple according to the alterable environment of water use. Therefore, the task to allocate agricultural water rationally and economically must be solved for the multiple use of agricultural reservoirs. On the basis of the above statement, this study aims at suggesting the rational method of water management by introducing an optimal technique to allocate the water in an existing agricultural reservoir rationally, for the sake of maximizing the economic effect. To achieve this objective, a reservoir, called "0-Bongje" as a sample of the case study, is selected for an agricultural water development proiect of medium scale. As a model for the optimum allocation of water in the multi-purpose use of reservoirs a linear programming model is developed and analyzed. As a result, findings of the study are as follows : First, a linear programing model is developed for the optimum allocation of water in the multi-purpose use of agricultural reservoirs. By adopting the model in the case of reservoir called "O-Bongje," the optimum solution for such various objects as irrigation area, the amount of domestic water supply, the size of power generation, and the size of reservoir storage, etc., can be obtained. Second, by comparing the net benefits in each object under the changing condition of inflow into the reservoir, the factors which can most affect the yearly total net benefit can be drawn, and they are in the order of the amount of domestic water supply, irrigation area, and power generation. Third, the sensitivity analysis for the decision variable of irrigation which may have a first priority among the objects indicate that the effective method of water management can be rapidly suggested in accordance with a condition under the decreasing area of irrigation. Fourth, in the case of decision making on the water allocation policy in an existing multi-purpose reservoir, the rapid comparison of numerous alternatives can be possible by adopting the linear programming model. Besides, as the resources can be analyed in connection with various activities, it can be concluded that the linear programing model developed in this study is more quantitative than the traditional methods of analysis. Fifth, all the possible constraint equations, in using a linear programming model for adopting a water allocation problem in the agricultural reservoirs, are presented, and the method of analysis is also suggested in this study. Finally, as the linear programming model in this study is found comprehensive, the model can be adopted in any different kind of conditions of agricultural reservoirs for the purpose of analyzing optimum water allocation, if the economic and technical coefficients are known, and the decision variable is changed in accordance with the changing condition of irrigation area.

  • PDF

The Identification of Multi-Fuzzy Model by means of HCM and Genetic Algorithms (클러스터링 기법과 유전자 알고리즘에 의한 다중 퍼지 모델으 동정)

  • Park, Byoun-Jun;Lee, Su-Gu;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3007-3009
    • /
    • 2000
  • In this paper, we design a Multi-Fuzzy model by means of clustering method and genetic algorithms for a nonlinear system. In order to determine structure of the proposed Multi-Fuzzy model. HCM clustering method is used. The parameters of membership function of the Multi-Fuzzy are identified by genetic algorithms. We use simplified inference and linear inference as inference method of the proposed Multi-Fuzzy model and the standard least square method for estimating consequence parameters of the Multi-Fuzzy. Finally, we use some of numerical data to evaluate the proposed Multi-Fuzzy model and discuss about the usefulness.

  • PDF

Linear Modeling of Viscoelastic Dampers Considering Nonlinear Dynamic Behavior (점탄성 감쇠기의 비선형거동을 고려한 선형모델 해석)

  • Kim, Jin-Koo;Kwon, Young-Jip;Min, Kyung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.171-177
    • /
    • 2002
  • The viscoelastic dampers are considered to be one of the most efficient means of upgrading existing structures against seismic loads. Generally in the dynamic analysis of a structure with added viscoelastic dampers the internal forces of the dampers are represented by constants that are linearly proportional to displacement and velocity. The purpose of this study is to verify the validity of the linear Kelvin model by comparing the results from the linear analysis with those obtained from the more rigorous nonlinear model such as fractional derivative model. According to the results the structural responses of 1-DOF structure obtained using the linear model are very close to those obtained from nonlinear model. However for multi-D0F structure the difference between the results from both models is enlarged as a results of the assumptions associated with the linear modeling of the viscoelastic dampers.