• Title/Summary/Keyword: multi-linear model

Search Result 730, Processing Time 0.024 seconds

Throughput-Delay Analysis of One-to-ManyWireless Multi-Hop Flows based on Random Linear Network

  • Shang, Tao;Fan, Yong;Liu, Jianwei
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.430-438
    • /
    • 2013
  • This paper addresses the issue of throughput-delay of one-to-many wireless multi-hop flows based on random linear network coding (RLNC). Existing research results have been focusing on the single-hop model which is not suitable for wireless multi-hop networks. In addition, the conditions of related system model are too idealistic. To address these limitations, we herein investigate the performance of a wireless multi-hop network, focusing on the one-to-many flows. Firstly, a system model with multi-hop delay was constructed; secondly, the transmission schemes of system model were gradually improved in terms of practical conditions such as limited queue length and asynchronous forwarding way; thirdly, the mean delay and the mean throughput were quantified in terms of coding window size K and number of destination nodes N for the wireless multi-hop transmission. Our findings show a clear relationship between the multi-hop transmission performance and the network coding parameters. This study results will contribute significantly to the evaluation and the optimization of network coding method.

Fuzzy Formation Controlling Phugoid Model-Based Multi-Agent Systems (장주기모델로 구성된 다개체시스템의 퍼지 군집제어)

  • Moon, Ji Hyun;Lee, Jaejun;Lee, Ho Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.508-512
    • /
    • 2016
  • This paper discusses a Takagi-Sugeno (T-S) fuzzy controller design problem for a phugoid model-based multi-agent system. The error between the state of a phugoid model and a reference is defined to construct a multi-agent system model. A T-S fuzzy model of the multi-agent system is built by introducing a nonlinear controller. A fuzzy controller is then designed to stabilize the T-S fuzzy model, where the synthesis condition is represented in terms of linear matrix inequalities.

A Bayes Linear Estimator for Multi-proprotions Randomized Response Model (무관질문형 다지확률응답모형에서의 베이즈 선형추정량에 관한 연구)

  • 박진우
    • The Korean Journal of Applied Statistics
    • /
    • v.6 no.1
    • /
    • pp.53-66
    • /
    • 1993
  • A Bayesian approach is suggested to the multi-proportions randomized response model. O'Hagan's (1987) Bayes linear estimator is extended to the inference of unrelated question-type randomized response model. Also some numerical comparisons are provided to show the performance of the Bayes linear estimator under the Dirichlet prior.

  • PDF

A Fuzzy Multi-Objective Linear Programming Model: A Case Study of an LPG Distribution Network

  • Ozyoruk, Bahar;Donmez, Nilay
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.3
    • /
    • pp.319-329
    • /
    • 2014
  • Supply chain management is a subject that has an increasing importance due to the developments in the global markets and technology. In this paper, a fuzzy multi-objective linear programming model is developed for the supply chain of a company dealing with procurement, storage, filling, and distribution of liquefied petroleum gas (LPG) in Turkey. The model intends to determine the quantities of LPG to be procured, stored, filled to cylinders, and transported between the plants and demand centers for six planning periods. In this model, which aims to minimize both total costs (sum of procurement, storage, filling, and transportation costs) and total transportation distances, demand quantities of the main demand centers and decision maker's aspiration levels about objective functions are fuzzy. After comparing the results obtained from the model with those obtained by using different methods, it is concluded that the proposed method can be applied to real world problems practically and it may be used in this type of problems in order to generate an efficient solution.

Stability Analysis of a Multi-Link TCP Vegas Model

  • Park, Poo-Gyeon;Choi, Doo-Jin;Choi, Yoon-Jong;Ko, Jeong-Wan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1072-1077
    • /
    • 2004
  • This paper provides a new approach to analyze the stability of a general multi-link TCP Vegas, which is a kind of feedback-based congestion algorithm. Whereas the conventional approaches use the approximately linearized model of the TCP Vegas along equilibrium pints, this approach models a multi-link TCP Vegas network in the form of a piecewise linear multiple time-delay system. And then, based on the exactly characterized dynamic model, this paper presents a new stability criterion via a piecewise and multiple delay-dependent Lyapunov-Krasovskii function. Especially, the resulting stability criterion is formulated in terms of linear matrix inequalities (LMIs).

  • PDF

Bond-Slip Model for CFRP Sheet-Concrete Adhesive Joint (탄소섬유쉬트-콘크리트 부착이음의 부착 모델)

  • Cho, Jeong-Rae;Cho, Keunhee;Park, Young-Hwan;Park, Jong-Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.285-292
    • /
    • 2006
  • In this study, a method determining the local bond-slip model from pure shear test results of CFRP sheet-concrete adhesive joints is proposed and local bond-slip models are presented. Adhesive joints with a specific bond-slip model, which is assumed as multi-linear curve in order to represent arbitary function, are solved numerically. The difference between the solution and test results are minimized for finding the bond-slip model. The model with bilinear curve is also optimized to verify the improvement of multi-linear model. The selected test results are ultimate load-adhesive length curves from a series of adhesive joints and load-displacement curves for each joint. The optimization problem is formulated by physical programming, and the optimized bond-slip model is found using genetic algorithm.

A Comparison Study of MIMO Water Wall Model with Linear, MFNN and ESN Models

  • Moon, Un-Chul;Lim, Jaewoo;Lee, Kwang Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.265-273
    • /
    • 2016
  • A water wall system is one of the most important components of a boiler in a thermal power plant, and it is a nonlinear Multi-Input and Multi-Output (MIMO) system, with 6 inputs and 3 outputs. Three models are developed and comp for the controller design, including a linear model, a multilayer feed-forward neural network (MFNN) model and an Echo State Network (ESN) model. First, the linear model is developed by linearizing a given nonlinear model and is analyzed as a function of the operating point. Second, the MFNN and the ESN are developed by using training data from the nonlinear model. The three models are validated using Matlab with nonlinear input-output data that was not used during training.

Joint parameter identification of a cantilever beam using sub-structure synthesis and multi-linear regression

  • Ingole, Sanjay B.;Chatterjee, Animesh
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.423-437
    • /
    • 2013
  • Complex structures are usually assembled from several substructures with joints connecting them together. These joints have significant effects on the dynamic behavior of the assembled structure and must be accurately modeled. In structural analysis, these joints are often simplified by assuming ideal boundary conditions. However, the dynamic behavior predicted on the basis of the simplified model may have significant errors. This has prompted the researchers to include the effect of joint stiffness in the structural model and to estimate the stiffness parameters using inverse dynamics. In the present work, structural joints have been modeled as a pair of translational and rotational springs and frequency equation of the overall system has been developed using sub-structure synthesis. It is shown that using first few natural frequencies of the system, one can obtain a set of over-determined system of equations involving the unknown stiffness parameters. Method of multi-linear regression is then applied to obtain the best estimate of the unknown stiffness parameters. The estimation procedure has been developed for a two parameter joint stiffness matrix.

Piecewise Linear Diode Models by Region Division for Circuit Simulations (회로 시뮬레이션을 위한 영역 분할식 구분적 선형 다이오드 모델)

  • Park, In-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.106-109
    • /
    • 2008
  • Piecewise linear diode models are widely used for large-signal circuit analyses, especially power electronic circuit simulations. When using a piecewise linear diode model for simulation, a switching method to select a proper one among linear models is needed. The conventional switching method keeps the previous ON, OFF state information, and applies different switching conditions according to the state. However, this method has difficulties especially in extending to multi-piecewise linear models. This paper presents a switching method which appropriately divides the v-i plane into regions and select a linear model according to the region where the operating point(the voltage and the current of the diode) belongs. This switching method is easily extended to multi-Piecewise linear models. An example using the tableau analysis and the backward Euler integration is presented for verification.

  • PDF

Development of the Dynamic Simulation Program for the Multi-Inverter Heat Pump Air-Conditioner (멀티 인버터 히트펌프의 동특성 해석 프로그램의 개발)

  • ;;小山繁
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1079-1088
    • /
    • 2001
  • A dynamic simulation model was developed to analyse the transient characteristics of a multi-inverter heat pump. The programs included a basic air conditioning system such as a evaporator, condenser, compressor, linear electronic expansion valve (LEV) and by-pass circuit. The theoretical model was derived from mass conservation and energy conservation equations to predict the performance of the multi-inverter heat pump at various operating conditions. Calculated results were compared with the values obtained from the experiments at different operation frequencies of compressor, area of the LEV and configuration of indoor units operation. The results of the simulation model showed a good agreement with the experimental ones, so that the model could be used as an efficient tool for thermodynamic design and control factor design of air-conditioners.

  • PDF