• Title/Summary/Keyword: multi-level-optimization

Search Result 276, Processing Time 0.027 seconds

Joint Radio Selection and Relay Scheme through Optimization Model in Multi-Radio Sensor Networks

  • Lee, HyungJune
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4451-4466
    • /
    • 2014
  • We present joint radio selection and relay scheme that delivers data from a source to a sink in heterogeneous stationary sensor networks consisting of various radio interfaces. The proposed scheme finds the optimal relay nodes and their corresponding radio interfaces that minimize energy consumption throughout the network while satisfying the end-to-end packet deadline requirement. We formulate the problem of routing through radio interface selection into binary integer programs, and obtain the optimal solution by solving with an optimization solver. We examine a trade-off relationship between energy consumption and packet delay based on network level simulations. We show that given the end-to-end deadline requirement, our routing algorithm finds the most energy-efficient routing path and radio interface across mesh hops. We demonstrate that the proposed routing scheme exploits the given packet delivery time to turn into network benefit of reducing energy consumption compared to routing based on single radio interface.

The Optimized Design of a NPC Three-Level Inverter Forced-Air Cooling System Based on Dynamic Power-loss Calculations of the Maximum Power-Loss Range

  • Xu, Shi-Zhou;He, Feng-You
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1598-1611
    • /
    • 2016
  • In some special occasions with strict size requirements, such as mine hoists, improving the design accuracy of the forced-air cooling systems of NPC three-level inverters is a key technology for improving the power density and decreasing the volume. First, a fast power-loss calculation method was brought. Its calculation principle introduced in detail, and the computation formulas were deduced. Secondly, the average and dynamic power losses of a 1MW mine hoist acting as the research target were analyzed, and a forced-air cooling system model based on a series of theoretical analyses was designed with the average power loss as a heat source. The simulation analyses proves the accuracy and effectiveness of this cooling system during the unit lifting period. Finally, according to an analysis of the periodic working condition, the maximum power-loss range of a NPC three-level inverter under multi cycle operation was obtained and its dynamic power loss was taken into the optimized cooling system model as a heat source to solve the power device damage caused by instantaneous heat accumulation. The effectiveness and feasibility of the optimization design based on the dynamic power loss calculation of the maximum power-loss range was proved by simulation and experimental results.

The Discrete Optimum Design of Steel Frame Considering Material and Geometrical Nonlinearties (재료 및 기하학적 비선형을 고려한 브레이싱된 강뼈대구조물의 최적설계)

  • Chang, Chun Ho;Park, Moon Ho;Lee, Hae Kyoung;Park, Soon Eung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.317-328
    • /
    • 2000
  • The objective of the research is to develop an algorithm for the optimum design of two-dimensional braced steel frames using an advanced analysis, which considers both material and geometric nonlinearties. Since both nonlinearties are considered in analysis process, Optimum design algorithm which does not require to calculate K-factor is presented. A multi-level discrete optimization technique with two parameters that uses the information of structural system and separate member has been developed. The structural analysis is performed by the relined plastic-hinge method which is based on zero-length plastic hinge theory. Optimization problem are formulated by AISC-LRFD code. The feasibility, validity and efficiency of the developed algorithm is demonstrated by the results of the braced steel frame.

  • PDF

Reliability Optimization for Multiple Multi-level Redundancy Allocation Problems using Genetic Algorithm (유전자 알고리듬을 활용한 혼합 다수준 리던던시 할당문제의 신뢰성 최적화)

  • Kim Ho-Gyun;Bae Chang-Ok;Yun Won-Yeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.110-116
    • /
    • 2006
  • 지금까지 대부분의 리던던시 할당문제(RAP: redundancy allocation problems) 관련 연구들에서는 최상위 수준에서의 시스템 리던던시보다는 최하위 수준인 부품의 리던던시를 고려하였다. 이는 최하위 수준에서의 리던던시가 최상위 수준의 리던던시보다 효과적이라고 알려진 일반적 원리 때문이었다. 최근 한 연구에서는 동일하지 않은 예비부품을 사용하여 리던던시를 실시하는 경우 직렬구조의 시스템에서도 일반적 원리와 다른 결과가 나타날 수 있음을 보이고, 시스템을 구성하는 모든 수준에서 리던던시가 가능한 다수준 리던던시 할당문제(MRAP: multi-level RAP)를 제시하였다. 그러나 MRAP는 모든 수준에서의 리던던시를 고려하지만 단지 한 수준을 선택하여 리던던시를 할 수 있다는 가정사항을 포함하고 있다. 본 연구에서는 MRAP의 이러한 가정사항을 완화하여 시스템을 구성하는 모든 수준에서 리던던시를 위한 수준을 복수로 선택 가능한 혼합 다수준 리던던시 할당문제(MMRAP: multiple MRAP)를 제시하고 모형화하며, 문제의 해법을 위한 유전자 알고리듬(GA: genetic algorithm)을 제시한다. 제시한 GA를 활용한 몇 가지 수치실험을 통해 모형이 기존의 RAP 경우보다 효과적임을 입증한다.

  • PDF

Intention-Oriented Itinerary Recommendation Through Bridging Physical Trajectories and Online Social Networks

  • Meng, Xiangxu;Lin, Xinye;Wang, Xiaodong;Zhou, Xingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3197-3218
    • /
    • 2012
  • Compared with traditional itinerary planning, intention-oriented itinerary recommendations can provide more flexible activity planning without requiring the user's predetermined destinations and is especially helpful for those in unfamiliar environments. The rank and classification of points of interest (POI) from location-based social networks (LBSN) are used to indicate different user intentions. The mining of vehicles' physical trajectories can provide exact civil traffic information for path planning. This paper proposes a POI category-based itinerary recommendation framework combining physical trajectories with LBSN. Specifically, a Voronoi graph-based GPS trajectory analysis method is utilized to build traffic information networks, and an ant colony algorithm for multi-object optimization is implemented to locate the most appropriate itineraries. We conduct experiments on datasets from the Foursquare and GeoLife projects. A test of users' satisfaction with the recommended items is also performed. Our results show that the satisfaction level reaches an average of 80%.

Optimization of ground response analysis using wavelet-based transfer function technique

  • Moghaddam, Amir Bazrafshan;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.149-164
    • /
    • 2014
  • One of the most advanced classes of techniques for ground response analysis is based on the use of Transfer Functions. They represent the ratio of Fourier spectrum of amplitude motion at the free surface to the corresponding spectrum of the bedrock motion and they are applied in frequency domain usually by FFT method. However, Fourier spectrum only shows the dominant frequency in each time step and is unable to represent all frequency contents in every time step and this drawback leads to inaccurate results. In this research, this process is optimized by decomposing the input motion into different frequency sub-bands using Wavelet Multi-level Decomposition. Each component is then processed with transfer Function relating to the corresponding component frequency. Taking inverse FFT from all components, the ground motion can be recovered by summing up the results. The nonlinear behavior is approximated using an iterative procedure with nonlinear soil properties. The results of this procedure show better accuracy with respect to field observations than does the Conventional method. The proposed method can also be applied to other engineering disciplines with similar procedure.

A VALIDATION METHOD FOR EMERGENCY OPERATING PROCEDURES OF NUCLEAR POWER PLANTS BASED ON DYNAMIC MULTI-LEVEL FLOW MODELING

  • QIN WEI;SEONG POONG HYUN
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.118-126
    • /
    • 2005
  • While emergency operating procedures (EOPs) occupy an important role in the management of various abnormal situations in nuclear power plants (NPPs), current technology for the validation of EOPs still largely depends on manual review. A validation method for EOPs of NPPs is thus proposed based on dynamic multi-level flow modeling (MFM). The MFM modeling procedure and the EOP validation procedure are developed and provided in the paper. Application of the proposed method to EOPs of an actual NPP shows that the proposed method provides an efficient means of validating EOPs. It is also found that the information on state transitions in MFM models during the management of abnormal situations is also useful for further analysis on EOPs including their optimization.

Multi-Parameter Based Scheduling for Multi-user MIMO Systems

  • Chanthirasekaran, K.;Bhagyaveni, M.A.;Parvathy, L. Rama
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2406-2412
    • /
    • 2015
  • Multi-user multi-input multi-output (MU-MIMO) system has attracted the 4th generation wireless network as one of core technique for performance enrichment. In this system rate control is a challenging problem and another problem is optimization. Proper scheduling can resolve these problems by deciding which set of user and at which rate the users send their data. This paper proposes a new multi-parameter based scheduling (MPS) for downlink multi-user multiple-input multiple-output (MU-MIMO) system under space-time block coding (STBC) transmissions. Goal of this MPS scheme is to offer improved link level performance in terms of a low average bit error rate (BER), high packet delivery ratio (PDR) with improved resource utilization and service fairness among the user. This scheme allows the set of users to send data based on their channel quality and their demand rates. Simulation compares the MPS performance with other scheduling scheme such as fair scheduling (FS), normalized priority scheduling (NPS) and threshold based fair scheduling (TFS). The results obtained prove that MPS has significant improvement in average BER performance with improved resource utilization and fairness as compared to the other scheduling scheme.

Nose Shape Optimization of the High-Speed Train for the Speed-up in Tunnel (터널 주행속도 향상을 위한 고속열차 전두부 형상 최적화)

  • Ku, Yo-Cheon;Yun, Su-Hwan;Rho, Joo-Hyun;Kim, Kyu-Hong;Lee, Dong-Ho;Kwon, Hyeok-Bin
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2207-2212
    • /
    • 2008
  • The next generation of Korean high-speed train under development will be designed for the maximum operating speed of 350km/h and maximum speed of 400km/h. This high-speed operation may cause the noise and vibration problems around tunnel exit due to the higher micro-pressure wave than present level. In this study, the nose shape optimization was conducted for the countermeasure against these problems. Axi-symmetric solver was used for numerical simulation, and response surface was used for efficiency of optimization process. Also the multi-step optimization was conducted to find out more accurate optimal shape. Through these analysis and optimization, it was found out that the optimal nose shapes for minimization of micro-pressure wave are definitely different along the nose length variation. And the mechanism of micro-pressure wave reduction was closely investigated by the analysis of generation process of compression wave in tunnel. The results are expected to be used as design guideline for performance improvement of the next generatin of Korean high-speed train.

  • PDF

The configuration Optimization of Truss Structure (트러스 구조물의 형상최적화에 관한 연구)

  • Lim, Youn Su;Choi, Byoung Han;Lee, Gyu Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.123-134
    • /
    • 2004
  • In this research, a multilevel decomposition technique to enhance the efficiency of the configuration optimization of truss structures was proposed. On the first level, the nonlinear programming problem was formulated considering cross-sectional areas as design variables, weight, or volume as objective function and behavior under multiloading condition as design constraint. Said nonlinear programming problem was transformed into a sequential linear programming problem. which was effective in calculation through the approximation of member forces using behavior space approach. Such approach has proven to be efficient in sensitivity analysis and different form existing shape optimization studies. The modified method of feasible direction (MMFD) was used for the optimization process. On the second level, by treating only shape design variables, the optimum problem was transformed into and unconstrained optimal design problem. A unidirectional search technique was used. As numerical examples, some truss structures were applied to illustrate the applicability. and validity of the formulated algorithm.