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Abstract 
 

Compared with traditional itinerary planning, intention-oriented itinerary recommendations 

can provide more flexible activity planning without requiring the user’s predetermined 

destinations and is especially helpful for those in unfamiliar environments. The rank and 

classification of points of interest (POI) from location-based social networks (LBSN) are 

used to indicate different user intentions. The mining of vehicles’ physical trajectories can 

provide exact civil traffic information for path planning. This paper proposes a POI 

category-based itinerary recommendation framework combining physical trajectories with 

LBSN. Specifically, a Voronoi graph-based GPS trajectory analysis method is utilized to 

build traffic information networks, and an ant colony algorithm for multi-object optimization 

is implemented to locate the most appropriate itineraries. We conduct experiments on 

datasets from the Foursquare and GeoLife projects. A test of users’ satisfaction with the 

recommended items is also performed. Our results show that the satisfaction level reaches an 

average of 80%. 
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1. Introduction 

According to observations of daily life, the nature of travel arrangements involves seeking 

a group of geographical locations and connecting them with the traffic paths that are most 

convenient best meet one’s personal demands. As described in reference [1], users generally 

seek a set of service objects that meet their various needs. For example, a traveler may have 

the following needs: shopping, dining, accommodation and sightseeing. These needs can 

only be met through a set of different geographic locations. Of course, there are many types 

of criteria available to evaluate the user’s final choice. Some people desire the best service, 

and others pursue the lowest cost. In the initial stages of itinerary planning, users often have 

only general intentions. Their final decisions will be made after enough information has been 

collected. During this collection process, they may ask friends for recommendations, conduct 

research on travel forums, analyze traffic data themselves, etc. 

When someone plans to travel to a new place, his initial intention is usually not very clear. 

To analyze these initial intentions, we presented questionnaires to a group of students at the 

National University of Defense Technology (in Changsha, Hunan, China, approximately 

1500 km from Beijing). The questionnaire includes the following three questions: 

1. How much do you know about Beijing? (A. Have been there many times, very 

familiar; B. Only been there 1-5 times, not very familiar; C. Never been there, not familiar at 

all.) 

2. Please describe how you would make your arrangements for a one-day trip to Beijing. 

3. If someone is willing to help you to arrange your trip, what demands will you have? 

Example 1: This example describes the answer of a volunteer belonging to class C 

(Never been there, not familiar at all): 

In the morning, he wants to have breakfast in a fast-food restaurant and then visit 

locations of historical interest. At noon, he would like to have lunch in a restaurant serving 

local cuisine. In the afternoon, he wishes to walk in a park. Finally, he would like to buy 

souvenirs for his friends and go to a party in a bar, which should be conveniently located. 

Before visiting all these places, he hopes to gather as much information as possible and 

obtain an accurate estimate of the costs of traffic, in both time and money. 
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Fig. 1: Results of questionnaire 

Results analysis (a total of 20 valid questionnaires were collected): 

Question 1: Numbers in parentheses represent the number of volunteers belonging to 

each class: A. (4) B. (8) C. (8). 

Question 2: For convenience of analysis, the arrangements proposed by the users are 

divided into two categories: 1. Specific activities: activities that have exact location 

requirements: for example, visiting the Imperial Palace in the morning. 2. General activities: 

activities with only general intentions (without particular location requirements): for 

example, having Sichuan cuisine for lunch. As shown in Fig. 1, according to their different 

choices in question 1, the users have been divided into 3 classes: A, B and C. Users who are 

familiar with Beijing (A-class) are more likely to arrange specific activities. In contrast, most 

of the users of the B and C classes only have general intentions. In the C-class users, the 

proportion of general activities is more than fifty percent. Furthermore, 4 of the 20 users 

have no precise preferences for their travel locations. 

Question 3: The five demands with the highest occurrence rates are (the number in 

parentheses indicates the number of users): 1. Unique/famous places (7); 2. Least traffic time 

cost (5); 3. Precise location description and best route (5); 4. Avoidance of rush hour (4); 5. 

Lower cost (4). 

After completing the analysis described above, it is reasonable to extract the following 

features of a common user’s itinerary planning when traveling to a new place. 

1. The description of the requested destination is usually a category but not a exact 

geographical location, such as “a famous attraction”, “a well-known snack bar”, etc. 

2. Users demand precise information about each place they wish to visit, such as its exact 

geographical location, the traffic route, and the shortest and average time costs by taxi 

between any two locations. 

3. Users are interested in hearing other people’s reviews of the locations. 

4. Some of the users’ demands have multiple optimizing objects that are clearly 

expressed and can be mathematically described, such as the lowest time cost in traffic; some 

are very vague and difficult to describe mathematically, such as the most famous location 

available. 

It is very difficult for a computer to implement a search or recommendation that will fully 

meets the user’s needs with the above features because the object description is not clear, 

and the necessary information is too extensive. Even a human guide will find it difficult to 

provide such recommendations because it is impossible for him/her to have full knowledge 
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of all the restaurants, hotels, and attractions in a city and the best traffic routes and times 

between them. In addition, because the GIS-based shortest route search algorithm does not 

consider real-time traffic changes and rush hours (weekends, people going to and from work), 

it is also very difficult for a route search algorithm to determine the best travel route and 

lowest time cost. To resolve such problems and help users make the best decisions, we 

jointly utilize the different users' historical trajectories and information from social networks 

to provide a category-based itinerary planning service. Fortunately, the current social 

networks and trajectory mining technologies offer effective support for such a service. 

1. Currently, most mobile devices are able to provide locations based on cellular 

networks or GPS. This feature makes it easy to collect mobile users’ trajectory data. On a 

much larger scale, cities’ traffic control and city planning departments are also collecting the 

trajectory data of large numbers of vehicles and mobile devices. Some large enterprises are 

also doing so to conduct relative research; Microsoft’s T-drive project [2][3] is one example. 

Because taxi drivers have the richest knowledge of a city’s road systems, researchers provide 

a real-time navigation service by mining the driving logs of a large number of taxis. 

2. Location-based social networks such as Jiepang and Foursquare support users by 

tagging, rating and reviewing places they have visited. These user-generated data have 

embraced the daily experience of millions of users and are highly valuable in the 

recommendation of itineraries. 

All these technologies provide us with the opportunity to realize accurate itinerary 

recommendations. To the best of our knowledge, no commercial entity has yet provided an 

itinerary planning recommendation service based on intentions. This paper will focus on the 

realization of a general itinerary recommendation service and make four contributions: 

1. Build a category-based activity scheduling model (Section 2); 

2. Design and implement a category tree-based POI (point of interest) query strategy and 

algorithm (Section 4); 

3. Propose a Voronoi graph-based GPS trajectory analysis method to build traffic 

information networks (Section 3); 

4. Combine social networks with traffic information networks to implement category 

based-recommendations using an ant colony algorithm (Section 4). 

Section 5 describes the demo and provides a detailed analysis of the query performance. 

Finally, section 7 concludes the paper with a discussion of future work. 

2. Model and Framework 

2.1 Model Of Itinerary Planning 

It is clear that any activity must be related to a location. Therefore, an activity can be denoted 

as a tuple with three elements: 

: , ,A PTcondition  
P (Place) denotes the geographical position, which indicates an exact location, such as the 

Imperial Palace, the Olympic Park, etc. 

T (Time) denotes the time when the activity takes place. 

C (Condition) represents a constraint on any aspect of an activity: for example, costing 

less than $100/person, traveling by taxi, etc. 
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It is important to notice that the locations are normally hierarchically organized. 

According to the results of our analysis of the questionnaires, users generally do not provide 

an exact description of the destinations they demand. Instead, they are more likely to request 

a category, such as a bar, shopping mall, etc. To solve this problem, this paper makes use of 

the categorization of different locations on Foursquare. A category (C) is a set of different 

location points: 

1 2 3:{, , ..., }nC PPP P
 

The categories are hierarchically organized. The locations belong to categories. 

i jC C
   jiP C

 
A path indicates the connecting route between two locations; i is the description, such as 

the time cost. 

: , ,s ePath PPi 
 

A trip is a time-ordered description of several activities and the paths between them. 

1 12 2:{, , , ,...}nTripAPathAPathA
 

In this paper, the question mark (?) is used to indicate a single place, and the asterisk (*) is 

used to indicate all the places in a category. With the use of these two marks, a user’s vague 

itinerary-planning demands could be described as follows: 

11:?,, ,...?,, :n nn nNeedCTconditionCTconditionoptimizer   

optimizer denotes the optimization goal, such as the shortest travel time or the hot spots 

of all the POIs. According to the model, example 1 can be described as follows: 

?Fast Food Restaurant, 8:00, ,?Historic Site, 9:00, ,

?Chinese Restaurant, 12:00, ,?Plaza, 13:00, ,

?Mall, 18:00, ,?Wine Bar, 20:00,

Workday Taxi Workday Taxi

Workday Taxi Workday Taxi

Workday Taxi Workday T

    

    

    :[ ,

]

axiMinTravelTime

AllPopular





2.2 Traffic Information Networks 

To identify the best possible trip, we need to build a cost function. The cost could be the time 

cost, the service evaluation, or the total length of the trip. If we want to identify the lowest 

time cost, information on the driving time between any two places becomes a necessary 

value. Thus, we build a semantic traffic map G of a city based on its taxis’ trajectories: 

{ , }G PPath  

P is the set of all the geographical places, and Path is the set of all the existing edges 

between these locations. To build a map G, we need to obtain information on all the 

locations and the paths between them. The detailed method of building this semantic traffic 

map is presented in Section 3. 

2.3 Framework Of Joint Itinerary Planning 

This paper accessed information about geographical locations from social networks and 

built a semantic traffic map by mining the GPS trajectories, as shown in Fig. 2. According to 

different cost functions, the system will present different recommendations for itinerary 

planning with detailed explanations. These explanations include valuable information for the 

user, such as the popularity of each location and the driving times between adjacent places 

on the trip. The entire system consists of three repositories: 
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1. Repositories of location points: We crawled all the location points provided by 

various users and evaluated by millions of users in the target city on location-based social 

networks. This collaboratively evaluated information can more objectively indicate the 

degrees of popularity of the location points; 

2. Categories of location points: These categories save locations’ classification 

information. In this paper, we use the hierarchy categories provided by Foursquare;  

3. Traffic information networks: This repository contains information on the shortest 

travel times and the best paths between any two arbitrary semantic location points in a city. 

We obtain the semantic locations to which users pay close attention from public transit 

agencies, and we mine taxi history data to obtain accurate information on the shortest paths 

(section 3.2). 

 
Fig. 2. Framework of joint itinerary planning 

Furthermore, the itinerary planner is responsible for recommending reasonable itineraries 

based on the information above, according to each user’s requirements. The UI module calls 

an online map system (such as Google Map) to display itineraries visually and supports 

users’ efforts to modify their requirements interactively. 

2.4 Flowchart Of Itinerary Recommendation 

The recommendation process is described in Fig. 3. First, the user sends his itinerary needs 

to the itinerary recommendation server. The server then calls for the LBSN and the trajectory 

processor (responsible for the maintenance of traffic information networks) to obtain data for 

the recommendation and used the category-based itinerary recommendation algorithm 

(section 4) to compute candidate itineraries. The users can select a special candidate itinerary 

to view more detailed information obtained from location-based social networks. 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6,  NO. 12, Dec 2012               3203 

 
Fig. 3. Flowchart of itinerary recommendation 

3. Voronoi Graph-Based Traffic Information Networks 

Traffic departments in many countries and cities are collecting the trajectories of public 

transportation vehicles. These GPS data have high frequencies and large time spans; 

therefore, they are very difficult to process. In addition, these trajectory data only contain 

spatial and time stamps, so they are unable to provide semantic information [4], which the 

user generally understands better and finds more useful. There are two main obstacles to 

converting the physical trajectory into feasible semantic knowledge: 1. Determining the 

physical location that the user understands best and knows well; 2. Identifying the shortest 

path and driving statistics between any two location points. In the next part of this section, 

we propose a semantic position-determining algorithm based on public transportation stops 

and a semantic traffic map-building algorithm based on a Voronoi diagram. These two 

algorithms make it possible to obtain the shortest time and optimal path between any two 

locations. 

3.1 Voronoi-Based Semantic Point Building 

Every city contains thousands of geographical locations or more; it would be very difficult 

for a resident to memorize all of them, let alone a stranger. Traditionally, the most frequently 

used method of describing a geographical location combines its “traffic network” and its 

landmarks: for example, No. 163, Haidian West Road, Beijing; or 400 m east of the south 

gate of the Olympic Park. Fortunately, when planning a stop or station on public 

transportation, the related departments always take the population, physical distance, traffic 

situation and other factors into consideration. These stops are commonly named according to 

semantic markers that the residents know well. Concerning the planning principle of these 

stops, it is reasonable to assume that for any important location A of a city, there is always a 

stop B so the time cost from B to A remains smaller than a given threshold: for example, 10 

minutes. Based on this assumption, this paper tries to build a semantic map of a city based on 

the stops of its public transportation. As shown in Fig. 4, the entire city area is decomposed 

using a Voronoi diagram, taking these stops as seeds. Each cell has a unique ID named after 

the seed stop inside it. Thus, each cell generates a semantic point with a constant ID and a 

constant name (SemiPoint). The Voronoi diagram insures that for any geographical point 

(GPS-Point, Point), there is a corresponding nearest semantic point (in our case, a stop). 
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Therefore, a GPS trajectory can be described by a semantic trajectory (Semi-trajectory, 

SemiList), which is a serial of SemiPoints. The information about all the stops can be 

accessed on the traffic department’s website. The Voronoi diagram is built using the classic 

plane sweep algorithm [5].  

 

 

Fig. 4. Voronoi based semantic point 

The upper-right corner of Fig. 4 is an n*n matrix; each element cellij stores the sub-trajectory 

and statistical information of the path that runs from the i-th semantic stop to the j-th 

semantic stop. For example, cellij can save the following information: all the trajectories 

from the i-th stop to the j-th stop (SubTrajectory[] array of the right lower sub-figure), the 

shortest travel time (Double [] array) on the basis of the trajectories calculated from i to j, 

and other detailed statistical information, such as the average running time and the shortest 

path according to the statistical hour. Furthermore, the cell data structures can be modified 

according to the system’s needs to provide more advanced traffic information.We treat each 

stop point separately as a start and a destination to build the semantic traffic map, which is 

stored in the form of an adjacent matrix (Time-Matrix[Stop Num][StopNum]). One element 

of this matrix describes the traffic statistics between two semantic points. The specific 

method used to generate these traffic statistics is determined by the administrator according 

to different demands and implemented using different statistical methods 

(StatisticFunction(): for example, during a seven-day week, calculating the shortest time and 

the best path every two hours. Considering that there are only seven days of data in the demo 

system, we only calculate the shortest time and best path between any two semantic points 

for rush hours on weekdays and weekends. 

3.2 Building Run Through Model-Based Traffic Information Networks  

After decomposing the city map, we must calculate the statistics between any two cells. In a 

traditional GIS system, the best path is simply the shortest path that can be located easily, 

and the shortest time could be estimated according to its Euclidean distance. However, in 

real life, traffic restrictions, one-way roads, dynamic traffic flows, and many other factors 

generate a very complicated situation in which the shortest path usually is not the one with 

the lowest time cost. Furthermore, no model or algorithm exists that can identify the path 

with the shortest travel time both precisely and independently. 

A GPS trajectory contains a detailed log of each vehicle’s travel history. Each GPS point 

includes latitude and longitude coordinates and the corresponding time stamp. We can make 
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use of these data to directly obtain the travel path and the time cost between two locations. 

The original trajectory data are enormous, difficult to handle, and hard for users to 

understand. Therefore, many trajectory-based intelligent applications utilize a semantic 

trajectory model [4][6][7][8]. The semantic trajectory model greatly reduces the 

computational and storage costs of processing trajectories and contains more semantic 

information; it is also easier to combine with other information for processing and mining. 

Our work is a type of intelligent service; therefore, the semantic trajectory model can also 

reduce the calculation cost and enhance the user’s experience. 

It is understood that nearly all the semantic trajectory-building methods [9][10][11] are 

based on a “stop and move” model. Stops are important places on the trajectory from an 

application point of view; they represent where a moving object has stayed for a minimal 

amount of time. Moves are sub-trajectories between two consecutive stops. As Fig. 5 shows, 

a trajectory can be described as a series of “stops” (clusters of yellow points that indicate that 

an object has stayed there beyond a time threshold [9]). 

 

Fig. 5. Semantic trajectory building methods 

We need to determine the shortest time from “Roast Duck Restaurant” to “Zoo” (red circles, 

where the triangles present the Voronoi cell corresponding to the two bus stops in Fig. 4) to 

conduct the itinerary recommendation, as shown in Fig. 5. However, we cannot obtain this 

information from the “Stop-Move trajectory” because there is no “stop” near “Roast Duck 

Restaurant”. 

As previously discussed, the semantic city map must cover all the “bus stops” through 

Voronoi division. The “stop and move” model does not meet our needs because some points 

have no meaning from the user's perspective but are valuable as traffic information statistics. 

Therefore, we designed a “run through” model for the traffic statistics, as shown below. 

To match the semantic city map, the cell-ID of each GPS is allocated to it as its Semantic 

Point. We then mapped millions of POI points to tens of thousands of stops, significantly 

diminishing the storage and computation costs. Considering the way the semantic city map is 

generated, we can confirm that the time errors introduced by this mapping strategy will not 

be greater than the time cost of a vehicle passing through a cell. For the example of Beijing, 

the travel time of buses between any two stops in Beijing is strictly less than 10 minutes; this 

means that the resulting shortest time cost will include an error of less than 10 minutes, 

which is acceptable in the scenario of itinerary planning. In a practical sense, the difficulty is 

that, there are not enough trips (a trip, as previously defined, is a complete trajectory from 

start to end) for any pair of Semantic Points to calculate the statistical driving time. 
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Therefore, we propose that we treat all the cells that are passed as statistical sources, even if 

they are not the start or end points of the path. Therefore, if we denote a trip As−Ae, after 

we take the run through cells into consideration, it can be denoted as follows: 

1 2 3, , , ,... ,s n eAAAAAA  

 
Algorithm 1 shows that when calculating the path statistics between cell A1 and A3, the 

sub-trip A1−A2−A3 of As−Ae, which runs through both A1 and A3, is also included in 

the statistics. In particular, this method can determine potential shortest paths within a longer 

trip. After entering a new cell, the algorithm will traverse all the historical semantic points in 

the trip, store the traveling time between each historical semantic point and the new semantic 

point, and update the statistics (line 5-8). 

4. Category-Based Itinerary Recommendation Algorithm 

4.1 Hierarchy Of Location Points 

 

Fig. 6. Hierarchy of the location points 
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There are many methods of the hierarchical categorization of locations. This paper makes us 

of the categorizations of Foursquare, one of the earliest and largest LBSN websites today. 

Fig. 6 partially depicts the hierarchy of this categorization in the form of a tree. As shown in 

Algorithm 2, when a user provides his/her requested location category, all the locations 

belonging to that category and the corresponding subcategories are taken into consideration. 

4.2 Least-Time Itinerary Planning Recommendation 

A good itinerary is created according to many factors, which make it a constraint 

optimization problem. These factors include the users' needs and other potential conditions. 

Hyoseok Yoonetc [12] has proposed three factors that are very reasonable: 

Elapsed Time Ratio: An itinerary that uses as much available time as possible is 

considered better; because time is a limited resource, users wish to utilize most of their 

available time. 

Stay Time Ratio: People should spend more time at the locations than they do traveling. 

An itinerary with less traveling time and more on-site staying time on is considered a better 

choice. 

Interest Density Ratio: Visitors to a new region would like to visit as many highly 

interesting locations as possible, i.e., popular locations and locations of cultural importance. 

This subsection proposes an itinerary planning recommendation algorithm that uses a cost 

function considering time cost, aiming to provide recommendations with the lowest time 

costs. In section 4.3, we will simultaneously consider the time cost and popularity of the 

POIs. 

4.2.1 Baseline: Single-object optimization 

 

 
We implement the baseline recommendation algorithm in three steps. The algorithm 

enumerates all the possible locations, traverses all the feasible trips and attempts to identify 

the best one to recommend. In the previous section, we received the user’s needs (needs), 

built a traffic graph matrix (matrix) with each element presenting the costs between two 
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semi-points (Cost calculated by CostFunction( )), obtained a category tree from Foursquare 

(CategoryTree, ct) and built an index of POIs (POIsIndex, PI) using CategorySet to describe 

the categories to which each POI belongs. As Algorithm 2 shows, in the first step (line 3), 

the k most popular geographical locations are given to each activity instance as candidates; 

in the second step (lines 5-8), one of the k locations is chosen for each activity instance, the 

path connecting them is found by checking the semantic traffic map and a recommendation 

item is generated; in the third step (line 10), the set of all recommendation items is ranked 

according to the cost of each item, and the final recommendation list is generated. 

4.2.2 Challenges Of The Baseline Algorithm 

The baseline algorithm is simple and intuitive, but it faces the following challenges: 

Combinatorial explosion: The algorithm needs to traverse all the possible combinations 

of all the activities’ candidate locations, which is at the level of k dim (dim is the number of 

activities). When k increases, the computing cost increases immensely. For example, when 

dim is 6 and k is set to 10, the time cost of the baseline algorithm reaches 2328 ms, which 

cannot meet the real-time needs of an online service. 

Overfitting of a single object: When the optimized object must obtain the least time cost 

and k is set to a large value (which means more candidate locations), the algorithm may be 

overfit to a single object, with the result that each location’s popularity is ignored, and the 

final recommendation will be a group of locations geographically assembled in a small area. 

Therefore, we conclude that the itinerary planning recommendation problem should be 

treated as a multi-objective optimization problem that does not strictly require an optimized 

result; an approximate optimization result is acceptable. In the following section, we propose 

a multi-objective optimization algorithm aimed at finding approximate optimizations in a 

short time. 

4.3 Ant Colony Optimization (ACA)-Based Multi-Objective Itinerary Planning 

The multi-objective optimization problem is very common in scientific research and 

engineering practice. In general, it includes a final object that is composed of several objects. 

This type of optimization is usually high-dimensional and large in scale, and it must consider 

the weight allocations of different sub-objects. However, we cannot precisely design the 

weight allocations for the different sub-objects of the problem discussed in this paper. For 

example, it is difficult to determine whether the travel time or the location’s popularity is 

more important. We hope that the planning algorithm developed here will have the following 

characteristics: 1) Strong availability: it should provide each user request with an 

approximate solution as quickly as possible, and it should converge quickly; 2) 

Extensibility: it should be easily joined with other methods for further optimization; 3) 

Parallelism: it should be easy to implement in parallel to make full use of the computing 

resources of multi-core systems or a cluster system. Through the comparison of various 

optimization methods, we found that the genetic algorithm (Genetic Algorithm, GA), the ant 

colony algorithm (Ant Colony Optimization, ACO) and the simulated annealing algorithm 

(Simulated Annealing, SA) and other heuristic algorithms are suitable to meet our needs. 

According to the conclusions presented by the reference [13], the ant colony algorithm has a 

faster convergence speed than the GA and the simulated annealing algorithm. Furthermore, 

the results obtained when solving combinatorial optimization problems using the ant colony 

algorithm with suitable parameters is better than those obtained with the genetic algorithm, 

the evolutionary algorithm and the simulated annealing algorithm when the number of nodes 

is lower than 100 [13]. Therefore, we choose the ant colony algorithm for itinerary 

recommendation because it can reduce the time and space costs of the combinatorial 
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explosion problem. This paper proposes a modified version of the ACA to solve the 

multi-objective optimization of itinerary planning recommendation. The modified ACA 

focused primarily on the weight allocations of different sub-objects. Furthermore, it is 

convenient to adjust the number of ants and running times according to the system load, 

improving the performance of the system. 

4.3.1 Building the ant colony system 

ACA is a bionic algorithm [14] whose main idea is to simulate the food-seeking behavior 

of ants. It initially places a large number of ants that randomly wander in the search space. 

Once an ant finds some “food”, it puts pheromone on the path to increase its attraction to 

other ants; the pheromone evaporates over time. This positive feedback strategy leads the 

algorithm to a global optimization. ACA is intrinsically parallel, which makes it easy to 

program in parallel. This paper introduces an ACA and makes the following modifications: it 

retains the global optimization object unchanged, i.e., finding the shortest path; and it 

introduces a heuristic rule that merges the locations’ popularity with the pheromone updating 

phase so the ants tend to choose locations with higher popularity. Activity scheduling is 

denoted as an ordered list with elements from n non-intersecting sets. 

1 2, ,...,nPath SS S 
 

ijp denotes the j-th location in the i-th set, assuming that each set has k elements. For any 

two elements from two adjacent subsets, respectively, a connecting edge exists. 

( 1)( , )ij i lEp p  

To describe the ant colony system, the following symbols are defined: 

    ( )tA k --describes the state of the k-th ant in the t-th visit. 

   ( 1)( , )ij i lDp p -- describes the minimal delay between two POIs.   

    ( 1)( , )t

ij i lI p p -- describes the information between two POIs of the t-th visit. 

    ( 1)( , )t

k ij i lP p p -- describes the probability of the k-th ant transfer from ijp to ( 1)i lp  . 

    ( )ijH p -- describes the popularity of a POI. 

4.3.2 Itinerary planning based on a modified ACA 

The procedure of the modified ACA is as follows: 

  1. Initialization: randomly place each ant on the locations of the first set. (Algorithm 3, 

lines 1-4) 

2. The ants traverse the n sets in order: the transfer probability between two sets is as 

follows. (Algorithm 3, lines 6-10) 

                         
(1) (1)

(1)

(1)

(, )*( )
(, )

(, )

t

ij il ilt

kij il

ij il

IppHp
Ppp

Dpp

 





          （1）                       

  3. After all the ants have completed their travel, calculate the total cost of each path and 

save the one with the smallest cost. In the meantime, evaluate the current state and determine 

whether the ending condition has been satisfied. If it is satisfied, return the best path; else, 

update the pheromone of each edge. When an ant completes a round, the pheromone of each 

edge is changed according to the following equation. (Algorithm 3, lines 11-18) 
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4. Re-place all the ants and start a new period. (Algorithm 3, line 19) 

According to the procedure described above, the pseudo-code of the modified ACA is 

given below. 

 

 

4.3.3 Configuration of pertinent parameters in ACA 

ACA is a randomized parallel searching algorithm, which is similar to other bionic 

algorithms, that searches for the optimized solution by promote several candidate solutions 

to evolve and change. This evolution process needs both the individual ant's adaptability and 

the interactions between different ants. Therefore, the performance and convergence of ACA 

are affected by the ant number m, the pheromone decay factor ( (1-α) in Eq.2) and many 

other parameters at the same time. According to the analysis of many existing application 

cases of ACA in [15], the following conclusion holds: theoretically, larger number of ants 

can improve the overall searching ability and stability of ACA. However, as in practical 

applications, when the ants number is very large, the pheromone left on paths that have 

already been searched tends to be the same, which will decrease the positive feedback of the 

pheromone and thus slow down the convergence of the algorithm. On the contrary, when the 

number of ants is too small, and the search space is large, pheromone on those paths that 
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seldom been searched will disappear (become zero) very soon, which decreases the 

randomness of the search process and makes the algorithm halt too early leading to 

instability. 

It's a very complicate problem to decide ants number and other parameters for ACA. 

There're no perfect theories that can present fully support yet, and these parameters are 

usually decided empirically. In general case, the parameters can be set up by trial, but this 

will deteriorate the performance and convergence of ACA. [15] has conducted a detailed 

analysis both theoretically and experimentally on how to set up parameters for ACA, and a 

practical scheme is proposed. In this paper, we take use of this scheme and decide the ants 

number m and the pheromone decay factor 1-α. Firstly, we use her experimental conclusion 

that (all the candidate POI number)/(ants number) is approximately 1.5. In the evaluation in 

Section 5.2, we assume that the number of user's activities each day is no more than 10 

(based on the practical data), and lies from 3 to 9, the candidate set size of each activity is 

about 10 (we choose 3, 6, 9 in the experiment separately). Thus the ants number should be 

within 20 to 60 (derived from 3*10/1.5 and 9*10/1.5 separately). Based on this analysis, we 

set the ants number to 20, 40, 60 separately in the experiment. Based on several rounds of 

experiments with different parameters, we conclude that the algorithm achieves the best 

performance when α is set to 0.5 while keeping other parameters the same. Therefore, 

experiments of Section 5.2 are all conducted with α=0.5. 

Through these experiments, the effects of ACA algorithm, such as the time delay and 

recommendation results, had been evaluated. As for the future work, the optimized 

configuration of ACA algorithm with different parameters will be discussed and evaluated in 

details. 

5. Demo System and Evaluation 

Foursquare is the largest location-based social network, with more than 20 million active 

users. We have built an experimental system based on the Foursquare and T-drive [3] 

datasets for Beijing. Information on the experiment platform and dataset is listed as follows: 

Hardware configuration: Our experiments were conducted on a quad-core 2.27 GHz 

Intel i3 CPU with 2G RAM and a 320G 5400 RPM disk driver. The disk page size is 4 KB 

(4096 Byte). 

Software configuration: Our OS is Ubuntu 11.04 (Linux 2.6.16). All the indexes are 

developed using JAVA 1.6 without optimization by multi-threads technology; the available 

memory of JVM is set to 1 G. 

Public transportation stops data: We collected 10,684 bus stops from the Beijing public 

transportation network, which covers all Beijing’s urban and suburban areas. The important 

characteristic of this dataset is that it comes from the real traffic system. Users are familiar 

with the stop names, which are easy to remember, because they use public transportation 

every day. At the same time, the distributions of these sites are reasonable because they were 

chosen by the city planning department according to information about the population, 

environment and culture. 

Foursquare dataset: We collected 30,784 effective POIs and the category information by 

calling the open API provided by the Foursquare Company. Each POI has a variety of 

information, such as its total “check-in” times, its number of historical visitors, 

user-submitted reviews, website addresses and so on. To quickly identify the entire candidate 

POIs belonging to the same categories, we built an inverted index [16] for every category 

and sort each POI list according to “check-in” times. The dataset is the result of crowd 
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intelligence coming from online social networks. Therefore, it includes more comprehensive 

and richer information than any commercial dataset. 

 GPS trajectory dataset: The real dataset is provided by the T-drive project of Microsoft 

Research Asia, which includes all the trajectories of 10,357 taxis from 2008-02-02 to 

2008-02-08 in Beijing [3]. 
 

5.1 Recommendation Results and User Interface 

Table 1 lists the recommendation results computed by the baseline algorithm and modified 

ACA with k=3 and k=6, respectively, for example 1. The user interface is presented in Fig. 7. 

The users input their travel intentions through selecting a category in the left-hand input area 

one by one with expected start time. Next, these intentions are submitted to the 

recommended server for itinerary planning. The server calculates the candidate 

recommendation paths, as shown in section 2.4, and the UI displays them in the middle 

region sorted by start time. The recommendation results include the location of each activity 

and its popularity, as indicated by “check-in” times (shown after the POI name). Users can 

also get the traffic information form a location to the next one in a trip (the number in 

brackets). Furthermore, users can click the desired elements to browse the homepage of 

every POI and review the information on the Foursquare website, including reviews and 

other users’ evaluations. At the same time, recommendations results are drawn in the Google 

map include all the POIs connected through a line according time. And you can click every 

POI to get its detail information which will shown by a tip in Google map.. From the above 

information, the users can develop an overall understanding of the recommended itinerary. 
 

 

Fig. 7. User interface 

The evaluation results in Table 1 present the average values of all the evaluations (a value 

between 1-10 is used to indicate the degree of satisfaction) completed in the questionnaire by 

the 14 volunteers belonging to classes A and B. The satisfaction levels of all four 

recommendations are, on average, greater than 7. At the same time, we find that although the 
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ant colony algorithm carries a larger time cost, its recommendation results are better 

accepted by the users than those of the baseline algorithm. It is interesting that when more 

candidate locations (larger k) are taken in the recommendation, the user satisfaction 

decreases. This demonstrates that the users care more about places’ popularity than about 

several minutes’ additional cost. In the next step, we will provide an online service that is 

more sensitive to the recommendation algorithm’s performance. In the next subsection, the 

time costs of the two algorithms are evaluated 

Table 1. Itinerary recommendations for Example 1 in Beijing City 

Category Activity scheduling Time 

(Mins) 

Score 

K=3

（Baseline

） 

McDonald's (143)-->6(Mins)--> Forbidden 

City(2914)-->9(Mins)-->Beijing Da Dong Roast Duck 

Restaurant (720)-->5(Mins)-->Jianwai 

SOHO(277)-->4(Mins)-->Sanlitun Village 

(5688)-->5(Mins)-->CJW The Place(167) 

25 8.1 

K=6

（Baseline

） 

McDonald's (143) -->3(Mins)--> East Gate: Temple of 

Heaven(193) -->3(Mins)-->Duck de Chine (287) 

-->3(Mins)-->Jianwai SOHO(277) -->2(Mins)--> Silk Street 

Market(1017) -->0(Mins)-->CJW The Place(167) 

11 7.4 

      K=3 

(Ant 

colony） 

McDonald's (143) -->6(Mins)--> Forbidden City(2914) 

-->9(Mins)-->Beijing Da Dong Roast Duck Restaurant (720) 

-->11(Mins)--> Tian'anmen Square(4908) -->4(Mins)--> Joy 

City(1933) -->2(Mins)-->Cepe(94) 

32 8.9 

 

     k=6 

(Ant 

colony） 

McDonald's (143) -->6(Mins)--> Forbidden City(2914) 

-->9(Mins)-->Beijing Da Dong Roast Duck Restaurant (720) 

-->5(Mins)-->Jianwai SOHO(277) -->0(Mins)-->The Place 

(1798) -->5 Mins)-->Enoterra(338) 

25 8.2 

 

5.2 Performance Analysis 

Recommendation results offer an important value to travelers. However, any discussion of 

an online service must also be sensitive to the algorithms’ time cost, which should not 

exceed two seconds. The baseline algorithm must traverse all the possible combinations 

among all the candidate activity sets. When the demanded itinerary contains more activities, 

the system will set k to a larger number, leading to a combinatorial explosion. If each 

activity has k candidate elements, and the itinerary contains n activities, the combination 

space will be k
n
. When k is fixed, the cost increases exponentially with n. When n is fixed, 

the value is a power function of k. Neither of these cases is tolerable for real-time 

applications. 
 

Table 2: Time cost (ms) and Round (in brackets) to obtain optimal recommendations with different 

k-values 

Run 20 40 60 

ant k=3 k=6 k=9 k=3 k=6 k=9 k=3 k=6 k=9 

20 47(2) 63(6) 62(5) 63(2) 78(12) 110(2) 78(14) 109(5) 172(1) 

40 62(4) 63(3) 64(14) 94(1) 109(7) 188(9) 234(3) 140(1) 203(10) 

60 78(1) 128(1) 172(8) 141(10) 188(11) 266(1) 187(5) 313(1) 328(6) 
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Table 2 lists the time cost and the serial number of each round (in brackets) in which the 

optimal recommendation is reached when the modified ACA’s ant number and total rounds 

are set to 20, 40 and 60. The results demonstrate that all the optimal recommendations are 

generated within 20 rounds. Furthermore, the time cost is no greater than 500 ms, which is 

acceptable for an online service. To compare the baseline algorithm with the modified ACA, 

we conducted the following experiments: 

Experiment 1: the activity number varies from 2 to 10 and the candidate number of POIs 

of each activity is 6. Fig. 8 presents the time cost in a logarithm chart. The ant number is set 

to 60, the round number is set to 20 (according to the above analysis, 20 is enough for the 

algorithm to obtain an optimal result). As the red line shows, the time cost of the baseline 

algorithm increases exponentially with the activity number, which follows our mathematical 

analysis. The time cost of the modified ACA increases linearly, finally stabilizing at a 

constant value. This is because the ants come to a consensus in a relatively short time, 

despite the way the optional combination increases with the activity number. 

 

Fig. 8. Activity number vs. k-value 

 

Experiment 2: the activity number is set to 6; the settings of the modified ACA are the same 

as in experiment 1. The candidate number k of each activity varies from 2 to 12, and the time 

cost is shown in the logarithm chart. As the red line in Fig. 9 shows, the time cost of the 

baseline algorithm increases with k as the curve of a power function. When k equals 12, the 

time cost can be as high as 7000 ms, which cannot meet the demands of a real-time 

recommendation system. In contrast, the time cost of the modified ACA is much smaller, 

with its highest value reaching 200 ms. 
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Fig. 9. Base line vs. ant colony algorithms 

According to the above analysis, the recommendation time cost of the baseline algorithm 

increases exponentially with k and n, which cannot meet the requirements of a real-time 

application. On the contrary, the modified ACA is affected only slightly by these parameters 

and fits the demands of real-time itinerary recommendation well. 
 

6. Related Works 

6.1 Itinerary Recommendation 

A number of itinerary generation and recommendation systems have previously been 

introduced. Hyoseok [12] provides smart itinerary recommendation services that use a 

simplified query composed of a start point, an end point and the duration to obtain a 

complete set of itineraries that are automatically generated based on real user-generated GPS 

trajectories. They simultaneously implement a personalized recommendation that provides 

the user with locations matching her travel preferences [7]. However, they have not provided 

an intention-oriented itinerary recommendation service. 

In TripTip [17], the user selects a location to request recommendations of similar types of 

places using popular tags. Huang and Bian [18] have built a travel recommendation system 

that integrates heterogeneous online travel information based on tourism ontology and 

recommends tourist attractions using travel preferences estimated by a Bayesian network. 

Kumar et al. [19] have presented a GIS-based Advanced Traveler Information System 

(ATIS) for Hyderabad City in India that includes a site-tour module based on the shortest 

distance. Compared to these works, we bridge online social networks and knowledge from 

GPS trajectories that collects history data from millions of users to develop the shortest and 

most interesting itineraries. 

6.2 Other related projects 

This section lists similar studies related to our study and describes their differences from our 

work: 

The GeoLife project of Microsoft Research Asia collected 165 users’ trajectory data from 

2008 to 2010. They have developed many interesting applications, such as a traffic 

navigation system [6], and they have studied the relationships between frequently visited 
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locations and users. Their discoveries can answer questions such as “What are the most 

popular tourist attractions in Beijing city?”, “Where will a tourist who has gone to the 

Imperial Palace be?”, “Which is the most frequently used route to a certain place?” and so on 

[8]. 

The research of Yerach [20] attempts to discover trajectory patterns and analyze people’s 

lifestyles. This work associates each social network user with a specific geographic location 

to build a spatial social network graph. Its main contribution is that it proposes using a series 

of operators to query social networks and spatial networks together and has implemented 

them based on relational and graph databases. The work has inspired us to combine spatial 

and social networks to explore new applications and technologies. 

The classic scenario of the spatial keyword query is to provide a physical location and a 

set of keywords to locate the single object that best matches the input keywords with 

minimal distance [21][22]. The research of [1] expands on spatial keyword search and 

proposed to realize the search with a set of objects that together match the input keywords 

with a minimum of spatial distance between the objects. The application scenarios of this 

type of query are restricted because they do not make full use of all the types of background 

knowledge in other information sources. Our work uses collective intelligence to identify 

more useful locations and provide reasonable travel paths for the recommended itineraries. 

The work of [23] supports trajectory retrieval using k query points. This work requires the 

user to input k accurate location points and determines the trajectories that pass through or 

are nearest to all the input points. However, it does not support category-based queries and 

cannot guarantee that the resulting trajectory will be the shortest or have the minimum travel 

time. 

7. Conclusion and Future Works 

By combining data from social networks with physical trajectories and making use of 

hierarchical categories of geographical locations, this paper accomplishes recommendation 

in itinerary planning. Based on semantic traffic information contained in historical 

trajectories, our recommendation algorithm provides the best path along multiple points, 

which satisfies the users demands better than the shortest path-searching algorithm. 

Meanwhile, the recommendations are presented with reviews of the recommended locations 

on the social network, effectively helping the user understand the system’s final 

recommendations. Therefore, the recommendation results are meaningful to the users as they 

plan their itineraries. 

However, this paper has only introduced the basic theories and built an original demo 

system. The system still requires much improvement and further optimization. The future 

work includes the following elements. 

1. Improve the user interface to receive user feedback. 

2. Generate a more precise analysis of the traffic information map, except for the shortest 

time; many more statistical factors should be considered and calculated. 

3. Make use of the parallelism of ACA to reduce the execution time.  

4. Collect user preferences to provide more personalized recommendations. 
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