• Title/Summary/Keyword: multi-layer perceptron neural network

Search Result 247, Processing Time 0.026 seconds

Development of Bond Strength Model for FRP-Plates Using Multi-layer Perceptron (다층 인식자 신경망 모형을 이용한 FRP 판의 부착강도 예측 모형 개발)

  • Kwak Kae-Hwan;Seok In-Soo;Hwang Hae-Sung;Sung Bai-Kyung;Jang Hwa-Sup
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.1009-1014
    • /
    • 2006
  • Synthetic materials with excellent thermodynamic characteristics and the merit of anti-corrosion are frequently used in buildings and constructions for enforcement of bent in stead of steel plates. Among them, many practical studies have been conducted on bond strength because of increased bond strength of FRP plates. Previous investigators identified the bond strength of FRP plates through experiments with settlement of various variables to identify the bond strength. However, the experiments to identify the bond force are difficult to be conducted because they requires large expenses and long time for equipment arrangement, thus, are conducted with limitation. In this study, for bond experiment, optimum neural network model was developed with use of Back-propagation and Conjugate gradient technique of previous investigators. Learning was performed with use of the variables of previous investigators in developed neural network model so as to identify the bond strength of FRP plates. for verification of developed model, credibility and excellence was proven by comparing with the models of previous investigators.

  • PDF

Inverse Model Control of An ER Damper System

  • Cho Jeong-Mok;Jung Taeg-Eun;Kim Dong-Hyeon;Joh Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.64-69
    • /
    • 2006
  • Due to the inherent nonlinear nature of Electro-rheological (ER) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the nonlinear damping force model is made to identify the properties of the ER damper using higher order spectrum. The higher order spectral analysis is used to investigate the nonlinear frequency coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper. Also, this paper presents an inverse model of the ER damper, i.e., the model can predict the required voltage so that the ER damper can produce the desired force for the requirement of vibration control of vehicle suspension systems. The inverse model is constructed by using a multi-layer perceptron neural network. A quarter-car suspension model is considered in this paper for analysis and simulation. Simulation results show that the proposed inverse model of ER damper can obtain control voltage of ER damper for required damping force.

Motion Vector Resolution Decision Algorithm based on Neural Network for Fast VVC Encoding (고속 VVC 부호화를 위한 신경망 기반 움직임 벡터 해상도 결정 알고리즘)

  • Baek, Han-gyul;Park, Sang-hyo
    • Journal of Broadcast Engineering
    • /
    • v.26 no.5
    • /
    • pp.652-655
    • /
    • 2021
  • Among various inter prediction techniques of Versatile Video Coding (VVC), adaptive motion vector resolution (AMVR) technology has been adopted. However, for AMVR, various MVs should be tested per each coding unit, which needs a computation of rate-distortion cost and results in an increase in encoding complexity. Therefore, in order to reduce the encoding complexity of AMVR, it is necessary to effectively find an optimal AMVR mode. In this paper, we propose a lightweight neural network-based AMVR decision algorithm based on more diverse datasets.

Employing TLBO and SCE for optimal prediction of the compressive strength of concrete

  • Zhao, Yinghao;Moayedi, Hossein;Bahiraei, Mehdi;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.753-763
    • /
    • 2020
  • The early prediction of Compressive Strength of Concrete (CSC) is a significant task in the civil engineering construction projects. This study, therefore, is dedicated to introducing two novel hybrids of neural computing, namely Shuffled Complex Evolution (SCE) and Teaching-Learning-Based Optimization (TLBO) for predicting the CSC. The algorithms are applied to a Multi-Layer Perceptron (MLP) network to create the SCE-MLP and TLBO-MLP ensembles. The results revealed that, first, intelligent models can properly handle analyzing and generalizing the non-linear relationship between the CSC and its influential parameters. For example, the smallest and largest values of the CSC were 17.19 and 58.53 MPa, and the outputs of the MLP, SCE-MLP, and TLBO-MLP range in [17.61, 54.36], [17.69, 55.55] and [18.07, 53.83], respectively. Second, applying the SCE and TLBO optimizers resulted in increasing the correlation of the MLP products from 93.58 to 97.32 and 97.22%, respectively. The prediction error was also reduced by around 34 and 31% which indicates the high efficiency of these algorithms. Moreover, regarding the computation time needed to implement the SCE-MLP and TLBO-MLP models, the SCE is a considerably more time-efficient optimizer. Nevertheless, both suggested models can be promising substitutes for laboratory and destructive CSC evaluative models.

Bond strength prediction of steel bars in low strength concrete by using ANN

  • Ahmad, Sohaib;Pilakoutas, Kypros;Rafi, Muhammad M.;Zaman, Qaiser U.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.249-259
    • /
    • 2018
  • This paper presents Artificial Neural Network (ANN) models for evaluating bond strength of deformed, plain and cold formed bars in low strength concrete. The ANN models were implemented using the experimental database developed by conducting experiments in three different universities on total of 138 pullout and 108 splitting specimens under monotonic loading. The key parameters examined in the experiments are low strength concrete, bar development length, concrete cover, rebar type (deformed, cold-formed, plain) and diameter. These deficient parameters are typically found in non-engineered reinforced concrete structures of developing countries. To develop ANN bond model for each bar type, four inputs (the low strength concrete, development length, concrete cover and bar diameter) are used for training the neurons in the network. Multi-Layer-Perceptron was trained according to a back-propagation algorithm. The ANN bond model for deformed bar consists of a single hidden layer and the 9 neurons. For Tor bar and plain bars the ANN models consist of 5 and 6 neurons and a single hidden layer, respectively. The developed ANN models are capable of predicting bond strength for both pull and splitting bond failure modes. The developed ANN models have higher coefficient of determination in training, validation and testing with good prediction and generalization capacity. The comparison of experimental bond strength values with the outcomes of ANN models showed good agreement. Moreover, the ANN model predictions by varying different parameters are also presented for all bar types.

A Comparative Study of Machine Learning Algorithms Using LID-DS DataSet (LID-DS 데이터 세트를 사용한 기계학습 알고리즘 비교 연구)

  • Park, DaeKyeong;Ryu, KyungJoon;Shin, DongIl;Shin, DongKyoo;Park, JeongChan;Kim, JinGoog
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.91-98
    • /
    • 2021
  • Today's information and communication technology is rapidly developing, the security of IT infrastructure is becoming more important, and at the same time, cyber attacks of various forms are becoming more advanced and sophisticated like intelligent persistent attacks (Advanced Persistent Threat). Early defense or prediction of increasingly sophisticated cyber attacks is extremely important, and in many cases, the analysis of network-based intrusion detection systems (NIDS) related data alone cannot prevent rapidly changing cyber attacks. Therefore, we are currently using data generated by intrusion detection systems to protect against cyber attacks described above through Host-based Intrusion Detection System (HIDS) data analysis. In this paper, we conducted a comparative study on machine learning algorithms using LID-DS (Leipzig Intrusion Detection-Data Set) host-based intrusion detection data including thread information, metadata, and buffer data missing from previously used data sets. The algorithms used were Decision Tree, Naive Bayes, MLP (Multi-Layer Perceptron), Logistic Regression, LSTM (Long Short-Term Memory model), and RNN (Recurrent Neural Network). Accuracy, accuracy, recall, F1-Score indicators and error rates were measured for evaluation. As a result, the LSTM algorithm had the highest accuracy.

A Study on Application of ARIMA and Neural Networks for Time Series Forecasting of Port Traffic (항만물동량 예측력 제고를 위한 ARIMA 및 인공신경망모형들의 비교 연구)

  • Shin, Chang-Hoon;Jeong, Su-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.35 no.1
    • /
    • pp.83-91
    • /
    • 2011
  • The accuracy of forecasting is remarkably important to reduce total cost or to increase customer services, so it has been studied by many researchers. In this paper, the artificial neural network (ANN), one of the most popular nonlinear forecasting methods, is compared with autoregressive integrated moving average(ARIMA) model through performing a prediction of container traffic. It uses a hybrid methodology that combines both the linear ARIAM and the nonlinear ANN model to improve forecasting performance. Also, it compares the methodology with other models in performance for prediction. In designing network structure, this work specially applies the genetic algorithm which is known as the effectively optimal algorithm in the huge and complex sample space. It includes the time delayed neural network (TDNN) as well as multi-layer perceptron (MLP) which is the most popular neural network model. Experimental results indicate that both ANN and Hybrid models outperform ARIMA model.

Performance comparison of wake-up-word detection on mobile devices using various convolutional neural networks (다양한 합성곱 신경망 방식을 이용한 모바일 기기를 위한 시작 단어 검출의 성능 비교)

  • Kim, Sanghong;Lee, Bowon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.454-460
    • /
    • 2020
  • Artificial intelligence assistants that provide speech recognition operate through cloud-based voice recognition with high accuracy. In cloud-based speech recognition, Wake-Up-Word (WUW) detection plays an important role in activating devices on standby. In this paper, we compare the performance of Convolutional Neural Network (CNN)-based WUW detection models for mobile devices by using Google's speech commands dataset, using the spectrogram and mel-frequency cepstral coefficient features as inputs. The CNN models used in this paper are multi-layer perceptron, general convolutional neural network, VGG16, VGG19, ResNet50, ResNet101, ResNet152, MobileNet. We also propose network that reduces the model size to 1/25 while maintaining the performance of MobileNet is also proposed.

An Object Recognition Method Based on Depth Information for an Indoor Mobile Robot (실내 이동로봇을 위한 거리 정보 기반 물체 인식 방법)

  • Park, Jungkil;Park, Jaebyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.958-964
    • /
    • 2015
  • In this paper, an object recognition method based on the depth information from the RGB-D camera, Xtion, is proposed for an indoor mobile robot. First, the RANdom SAmple Consensus (RANSAC) algorithm is applied to the point cloud obtained from the RGB-D camera to detect and remove the floor points. Next, the removed point cloud is classified by the k-means clustering method as each object's point cloud, and the normal vector of each point is obtained by using the k-d tree search. The obtained normal vectors are classified by the trained multi-layer perceptron as 18 classes and used as features for object recognition. To distinguish an object from another object, the similarity between them is measured by using Levenshtein distance. To verify the effectiveness and feasibility of the proposed object recognition method, the experiments are carried out with several similar boxes.

Time-Series Prediction of Baltic Dry Index (BDI) Using an Application of Recurrent Neural Networks (Recurrent Neural Networks를 활용한 Baltic Dry Index (BDI) 예측)

  • Han, Min-Soo;Yu, Song-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.50-53
    • /
    • 2017
  • Not only growth of importance to understanding economic trends, but also the prediction to overcome the uncertainty is coming up for long-term maritime recession. This paper discussed about the prediction of BDI with artificial neural networks (ANN). ANN is one of emerging applications that can be the finest solution to the knotty problems that may not easy to achieve by humankind. Proposed a prediction by implementing neural networks that have recurrent architecture which are a Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM). And for the reason of comparison, trained Multi Layer Perceptron (MLP) from 2009.04.01 to 2017.07.31. Also made a comparison with conventional statistics, prediction tools; ARIMA. As a result, recurrent net, especially RNN outperformed and also could discover the applicability of LSTM to specific time-series (BDI).

  • PDF