• 제목/요약/키워드: multi-layer neural networks

검색결과 225건 처리시간 0.029초

A neural network solver for differential equations

  • Wang, Qianyi;Aoyama, Tomoo;Nagashima, Umpei;Kang, Eui-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.88.4-88
    • /
    • 2001
  • In this paper, we propose a solver for differential equations, using a multi-layer neural network. The multi-layer neural network is a transformer function originally where the function is differential and the explicit representation has been developed. The learning determines the response of neural networks; however, the response is not equal to the output values. The differential relations are also the response. The differential conditions can be also set as teaching data; therefore, there is a possibility to reach a new solver for the differential equations. Since it is unknown how to define the input data for the neural network solver during long terms, we could not derive the expressions. Recently, the analogue type neural network is known and it transforms any vector to another The "any" must be...

  • PDF

FNN 및 PNN에 기초한 FPNN의 합성 다층 추론 구조와 알고리즘 (The Hybrid Multi-layer Inference Architectures and Algorithms of FPNN Based on FNN and PNN)

  • 박병준;오성권;김현기
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권7호
    • /
    • pp.378-388
    • /
    • 2000
  • In this paper, we propose Fuzzy Polynomial Neural Networks(FPNN) based on Polynomial Neural Networks(PNN) and Fuzzy Neural Networks(FNN) for model identification of complex and nonlinear systems. The proposed FPNN is generated from the mutually combined structure of both FNN and PNN. The one and the other are considered as the premise part and consequence part of FPNN structure respectively. As the consequence part of FPNN, PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and self-organizing networks that can be generated. FPNN is available effectively for multi-input variables and high-order polynomial according to the combination of FNN with PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get better output performance with superb predictive ability. As the premise part of FPNN, FNN uses both the simplified fuzzy inference as fuzzy inference method and error back-propagation algorithm as learning rule. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using genetic algorithms. And we use two kinds of FNN structure according to the division method of fuzzy space of input variables. One is basic FNN structure and uses fuzzy input space divided by each separated input variable, the other is modified FNN structure and uses fuzzy input space divided by mutually combined input variables. In order to evaluate the performance of proposed models, we use the nonlinear function and traffic route choice process. The results show that the proposed FPNN can produce the model with higher accuracy and more robustness than any other method presented previously. And also performance index related to the approximation and prediction capabilities of model is evaluated and discussed.

  • PDF

Fragility assessment of RC bridges using numerical analysis and artificial neural networks

  • Razzaghi, Mehran S.;Safarkhanlou, Mehrdad;Mosleh, Araliya;Hosseini, Parisa
    • Earthquakes and Structures
    • /
    • 제15권4호
    • /
    • pp.431-441
    • /
    • 2018
  • This study provides fragility-based assessment of seismic performance of reinforced concrete bridges. Seismic fragility curves were created using nonlinear analysis (NA) and artificial neural networks (ANNs). Nonlinear response history analyses were performed, in order to calculate the seismic performances of the bridges. To this end, 306 bridge-earthquake cases were considered. A multi-layered perceptron (MLP) neural network was implemented to predict the seismic performances of the selected bridges. The MLP neural networks considered herein consist of an input layer with four input vectors; two hidden layers and an output vector. In order to train ANNs, 70% of the numerical results were selected, and the remained 30% were employed for testing the reliability and validation of ANNs. Several structures of MLP neural networks were examined in order to obtain suitable neural networks. After achieving the most proper structure of neural network, it was used for generating new data. A total number of 600 new bridge-earthquake cases were generated based on neural simulation. Finally, probabilistic seismic safety analyses were conducted. Herein, fragility curves were developed using numerical results, neural predictions and the combination of numerical and neural data. Results of this study revealed that ANNs are suitable tools for predicting seismic performances of RC bridges. It was also shown that yield stresses of the reinforcements is one of the important sources of uncertainty in fragility analysis of RC bridges.

컬러 입력 영상을 갖는 Convolutional Neural Networks를 이용한 QFN 납땜 불량 검출 (QFN Solder Defect Detection Using Convolutional Neural Networks with Color Input Images)

  • 김호중;조태훈
    • 반도체디스플레이기술학회지
    • /
    • 제15권3호
    • /
    • pp.18-23
    • /
    • 2016
  • QFN (Quad Flat No-leads Package) is one of the SMD (Surface Mount Device). Since there is no lead in QFN, there are many defects on solder. Therefore, we propose an efficient mechanism for QFN solder defect detection at this paper. For this, we employ Convolutional Neural Network (CNN) of the Machine Learning algorithm. QFN solder's color multi-layer images are used to train CNN. Since these images are 3-channel color images, they have a problem with applying to CNN. To solve this problem, we used each 1-channel grayscale image (Red, Green, Blue) that was separated from 3-channel color images. We were able to detect QFN solder defects by using this CNN. In this paper, it is shown that the CNN is superior to the conventional multi-layer neural networks in detecting QFN solder defects. Later, further research is needed to detect other QFN.

Design of hetero-hybridized feed-forward neural networks with information granules using evolutionary algorithm

  • 노석범;오성권;안태천
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.483-487
    • /
    • 2005
  • We introduce a new architecture of hetero-hybridized feed-forward neural networks composed of fuzzy set-based polynomial neural networks (FSPNN) and polynomial neural networks (PM) that are based on a genetically optimized multi-layer perceptron and develop their comprehensive design methodology involving mechanisms of genetic optimization and Information Granulation. The construction of Information Granulation based HFSPNN (IG-HFSPNN) exploits fundamental technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks, and genetic algorithms(GAs) and Information Granulation. The architecture of the resulting genetically optimized Information Granulation based HFSPNN (namely IG-gHFSPNN) results from a synergistic usage of the hybrid system generated by combining new fuzzy set based polynomial neurons (FPNs)-based Fuzzy Neural Networks(PM) with polynomial neurons (PNs)-based Polynomial Neural Networks(PM). The design of the conventional genetically optimized HFPNN exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being tuned by using Genetie Algorithms throughout the overall development process. However, the new proposed IG-HFSPNN adopts a new method called as Information Granulation to deal with Information Granules which are included in the real system, and a new type of fuzzy polynomial neuron called as fuzzy set based polynomial neuron. The performance of the IG-gHFPNN is quantified through experimentation.

  • PDF

Neural Netwotk Analysis of Acoustic Emission Signals for Drill Wear Monitoring

  • Prasopchaichana, Kritsada;Kwon, Oh-Yang
    • 비파괴검사학회지
    • /
    • 제28권3호
    • /
    • pp.254-262
    • /
    • 2008
  • The objective of the proposed study is to produce a tool-condition monitoring (TCM) strategy that will lead to a more efficient and economical drilling tool usage. Drill-wear monitoring is an important attribute in the automatic cutting processes as it can help preventing damages of the tools and workpieces and optimizing the tool usage. This study presents the architectures of a multi-layer feed-forward neural network with back-propagation training algorithm for the monitoring of drill wear. The input features to the neural networks were extracted from the AE signals using the wavelet transform analysis. Training and testing were performed under a moderate range of cutting conditions in the dry drilling of steel plates. The results indicated that the extracted input features from AE signals to the supervised neural networks were effective for drill wear monitoring and the output of the neural networks could be utilized for the tool life management planning.

신경회로망을 이용한 도립전자의 학습제어 (Learning Control of Inverted Pendulum Using Neural Networks)

  • 이재강;김일환
    • 산업기술연구
    • /
    • 제24권A호
    • /
    • pp.99-107
    • /
    • 2004
  • This paper considers reinforcement learning control with the self-organizing map. Reinforcement learning uses the observable states of objective system and signals from interaction of the system and the environments as input data. For fast learning in neural network training, it is necessary to reduce learning data. In this paper, we use the self-organizing map to parition the observable states. Partitioning states reduces the number of learning data which is used for training neural networks. And neural dynamic programming design method is used for the controller. For evaluating the designed reinforcement learning controller, an inverted pendulum of the cart system is simulated. The designed controller is composed of serial connection of self-organizing map and two Multi-layer Feed-Forward Neural Networks.

  • PDF

Fast Color Classifier Using Neural Networks in RGB and YUV Color-Space

  • Lee, Seonghoon;Lee, Minjung;Park, Youngkiu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.109.3-109
    • /
    • 2002
  • 1. Introduction 2. Vision system 3. Effect of brightness variations 4. Color classifier using multi-layer neural network 5. Experimental result of color classifier 6. Applications for robot soccer system 7. Conclusion

  • PDF

Gated Multi-Modal Neural Networks를 이용한 다중 웨어러블 센서 결합 방법 및 일상 행동 패턴 분석 (Multi-Modal Wearable Sensor Integration for Daily Activity Pattern Analysis with Gated Multi-Modal Neural Networks)

  • 온경운;김은솔;장병탁
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권2호
    • /
    • pp.104-109
    • /
    • 2017
  • 본고에서는 다중 웨어러블 센서 데이터로부터 사용자의 일상 생활 행동 패턴을 분석할 수 있는 새로운 기계학습 모델을 제안한다. 제안하는 모델은 다중 웨어러블 센서 데이터를 효과적으로 학습하기 위하여 사람이 다중 센서 정보를 처리하는 방법을 적용한 새로운 신경망 모델이다. 제안하는 Gated multi-modal neural netoworks는 계층적 신경망 구조를 가지고 있으며 Gate 모듈을 통해 각 센서 데이터를 선택적으로 결합하여 처리하는 특징을 가진다. 실험을 위해 다중 웨어러블 장치를 착용하고 일상 생활 중 한 가지인 레스토랑에서의 행동 센서 데이터를 수집하였다. 실험 결과로서, 제시하는 모델을 이용하여 실제 웨어러블 센서 데이터를 분석하였을 때 분류 정확도가 비교적 정확하고 빠르게 처리할 수 있음을 확인하였다. 또한 모델의 중간 계층에서의 노드의 활성화 패턴 분석을 통해 자동으로 일상생활 패턴을 추출할 수 있고 이를 이용하여 지식 스키마를 생성할 수 있음을 확인하였다.

빠른 학습 속도를 갖는 로보트 매니퓰레이터의 병렬 모듈 신경제어기 설계 (A Design of Parallel Module Neural Network for Robot Manipulators having a fast Learning Speed)

  • 김정도;이택종
    • 전자공학회논문지B
    • /
    • 제32B권9호
    • /
    • pp.1137-1153
    • /
    • 1995
  • It is not yet possible to solve the optimal number of neurons in hidden layer at neural networks. However, it has been proposed and proved by experiments that there is a limit in increasing the number of neuron in hidden layer, because too much incrememt will cause instability,local minima and large error. This paper proposes a module neural controller with pattern recognition ability to solve the above trade-off problems and to obtain fast learning convergence speed. The proposed neural controller is composed of several module having Multi-layer Perrceptron(MLP). Each module have the less neurons in hidden layer, because it learns only input patterns having a similar learning directions. Experiments with six joint robot manipulator have shown the effectiveness and the feasibility of the proposed the parallel module neural controller with pattern recognition perceptron.

  • PDF