• Title/Summary/Keyword: multi-holes

Search Result 162, Processing Time 0.038 seconds

GALAXIES ON DIET: FEEDBACK SIGNATURES IN RADIO-AGN HOST GALAXIES

  • Karouzos, Marios;Im, Myungshin;Trichas, Markos;Goto, Tomogotsu;Malkan, Matthew;Ruiz, Angel;Jeon, Yiseul;Kim, Ji Hoon;Lee, Hyung Mok;Kim, Seong Jin;Oi, Nagisa;Matsuhara, Hideo;Takagi, Toshinobu;Murata, Kazumi;Wada, Takehiko;Wada, Kensuke;Shim, Hyunjin;Hanami, Hitoshi;Serjeant, Stephen;White, Glenn;Pearson, Chris;Ohyama, Youichi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.201-203
    • /
    • 2017
  • There exists strong evidence supporting the co-evolution of central supermassive black holes and their host galaxies; however it is still under debate how such a relation comes about and whether it is relevant for all or only a subset of galaxies. An important mechanism connecting AGN to their host galaxies is AGN feedback, potentially heating up or even expelling gas from galaxies. AGN feedback may hence be responsible for the eventual quenching of star formation and halting of galaxy growth. A rich multi-wavelength dataset ranging from the X-ray regime (Chandra), to far-IR (Herschel), and radio (WSRT) is available for the North Ecliptic Pole field, most notably surveyed by the AKARI infrared space telescope, covering a total area on the sky of 5.4 sq. degrees. We investigate the star formation properties and possible signatures of radio feedback mechanisms in the host galaxies of 237 radio sources below redshift z = 2 and at a radio 1.4 GHz flux density limit of 0.1 mJy. Using broadband SED modelling, the nuclear and host galaxy components of these sources are studied simultaneously as a function of their radio luminosity. Here we present results concerning the AGN content of the radio sources in this field, while also offering evidence showcasing a link between AGN activity and host galaxy star formation. In particular, we show results supporting a maintenance type of feedback from powerful radio-jets.

Ultra Wideband CPW Baluns Having Multistage Wilkinson Structure (다단 윌킨슨 구조의 초광대역 CPW 발룬)

  • Lim Jong-Sik;Park Ung-Hee;Jeong Yong-Chae;Ahn Dal;Oh Seong-Min;Koo Jae-Jin;Kim Kwang-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.9 s.112
    • /
    • pp.811-820
    • /
    • 2006
  • Ultra wideband CPW batons are proposed in this paper. The proposed talons are consisted of ultra wideband multi-stage Wilkinson dividers and 'X'-shaped $180^{\circ}$ out-of-phase generator. Bottom-bridges and via-holes are used to connect CPW ground lines instead of the conventional air-bridges which require troublesome manual working in fabrication with HMIC(Hybrid Microwave Integrated Circuits) substrates. The proposed CPW batons have ultra wideband of 3 or $10(=F_{figh}/F_{low})$ theoretically, the wideband characteristics and S-parameters of the basis Wilkinson divider are directly converted to those of the proposed batons. The proposed batons are so compact and small compared to the conventional Wilkinson batons because no additional area for out-of-phase section is required. So the size of the proposed batons is exactly the same as that of the basis Wilkinson dividers. As examples, 3-stage and 7-stage wideband Wilkinson dividers are converted to the proposed batons. Their measured operating bandwidth are $1\sim3GHz$ and $0.8\sim5GHz$, respectively, with excellent matching, isolation and power division performances. The measured magnitude and phase balance errors are ${\pm}0.5dB\;and\;0.45\;dB,\;and\;{\pm}5^{\circ}\;and\;{\pm}10^{\circ}C$ over $1\sim3GHz\;and\;0.8\sim5GHz$, respectively.

A New Strategy to Fabricate a Colloidal Array Templated $TiO_2$ Photoelectrode for Dye-sensitized Solar Cells

  • Lee, Hyeon-Jeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.8.1-8.1
    • /
    • 2011
  • Nanocrystalline titanium dioxide ($TiO_2$) materials have been widely used as an electron collector in DSSC. This is required to have an extremely high porosity and surface area such that the dye can be sufficiently adsorbed and be electronically interconnected, resulting in the generation of a high photocurrent within cells. In particular, their geometrical structures and crystalline phase have been extensively investigated as important issues in improving its photovoltaic efficiency. In this study, we present a new strategy to fabricate a photoelectrode having a periodic structured $TiO_2$ film templated from 1D or 3D polystyrene (PS) microspheres array. Monodisperse PS spheres of various radiuses were used for colloidal array on FTO glasses and two types of photoelectrode structures with different $TiO_2$ materials were investigated respectively. One is the igloo-shaped electrode prepared by $TiO_2$ deposition by RF-sputtering onto 2D microsphere-templated substrates. At the interface between the film and substrate, there are voids formed by the decomposition of PS microspheres during the calcination step. These holes might be expected to play the predominant roles as scattering spherical voids to promote a light harvesting effect, a spacious structure for electrolytes with higher viscosity and effective paths for electron transfer. Additionally the nanocrystalline $TiO_2$ phase prepared by the RF-sputtering method was previously reported to improve the electron drift mobility within $TiO_2$ electrodes. This yields solar cells with a cell efficiency of 2.45% or more at AM 1.5 illumination, which is a very remarkable result, considering its $TiO_2$ electrode thickness (<2 ${\mu}m$). This study can be expanded to obtain higher cell efficiency by higher dye loading through the increase of surface area or multi-layered stacking. The other is the inverse opal photonic crystal electrode prepared by titania particles infusion within 3D colloidal arrays. To obtain the enlargement of ordered area and high quality of crystallinity, the synthesis of titania particles coated with a organic thin layer were applied instead of sol-gel process using the $TiO_2$ precursors. They were dispersed so well in most solvents without aggregates and infused successfully within colloidal array structures. This ordered mesoporous structure provides the large surface area leading to the enough adsorption of dye molecules and have an light harvesting effect due to the photonic band gap properties (back-and-forth reflection effects within structures). A major advantage of this colloidal array template method is that the pore size and its distribution within $TiO_2$ photoelectrodes are determined by those of latex beads, which can be controlled easily. These materials may have promising potentials for future applications of membrane, sensor and so on as well as solar cells.

  • PDF

Calculation of Nuclear Characteristics of the TRIGA Mark-III Reactor (TRIGA Mark-III 원자로의 노심특성계산)

  • Chong Chul Yook;Gee Yang Han;Byung Jin Jun;Ji Bok Lee;Chang Kun Lee
    • Nuclear Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.264-276
    • /
    • 1981
  • A simulation procedure which can represent time-dependent nuclear characteristics of TRIGA Mark-III reactor is developed. CITATION, a multi-group diffusion-depletion program, has been utilized as calculational tool. The group structure employed in this study consists of 7 groups: -3-fast and 4-thermal-which is conventionally utilized in TRIGA type reactor analysis. Three-dimensional nuclear characteristics are synthesized by combining results from two-dimensional plane calculation and two-dimensional cylinder calculation, since direct three-dimensional approach is not yet possible. An effort ia made to develope a method which can extract effective zone and group dependent bucklings by neutron diffusion theory rather than conventional zone and/or group independent Ducklings by neutron transport theory, since neutron leakage is quite high for small core such as research reactors. It is turned out that the method developed in this study gives satisfactory results. The calculation is performed under assumptions that all control rods are fully withdrawn, that no samples are inserted in the irradiation holes and that the core is located in the center of the reactor pool. Burnup-dependent variation of core excess reactivity, time dependent change of Xe-135 poisoning and reactivity worth of rotary specimen rack are calculated and compared with operation records. Neutron flux and power distribution as well as neutron spectrum in each irradiation .facility are presented.

  • PDF

THE INFRARED MEDIUM-DEEP SURVEY. V. A NEW SELECTION STRATEGY FOR QUASARS AT z > 5 BASED ON MEDIUM-BAND OBSERVATIONS WITH SQUEAN

  • JEON, YISEUL;IM, MYUNGSHIN;PAK, SOOJONG;HYUN, MINHEE;KIM, SANGHYUK;KIM, YONGJUNG;LEE, HYE-IN;PARK, WOOJIN
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.1
    • /
    • pp.25-35
    • /
    • 2016
  • Multiple color selection techniques are successful in identifying quasars from wide-field broadband imaging survey data. Among the quasars that have been discovered so far, however, there is a redshift gap at 5 ≲ z ≲ 5.7 due to the limitations of filter sets in previous studies. In this work, we present a new selection technique of high redshift quasars using a sequence of medium-band filters: nine filters with central wavelengths from 625 to 1025 nm and bandwidths of 50 nm. Photometry with these medium-bands traces the spectral energy distribution (SED) of a source, similar to spectroscopy with resolution R ~ 15. By conducting medium-band observations of high redshift quasars at 4.7 ≤ z ≤ 6.0 and brown dwarfs (the main contaminants in high redshift quasar selection) using the SED camera for QUasars in EArly uNiverse (SQUEAN) on the 2.1-m telescope at the McDonald Observatory, we show that these medium-band filters are superior to multi-color broad-band color section in separating high redshift quasars from brown dwarfs. In addition, we show that redshifts of high redshift quasars can be determined to an accuracy of Δz/(1 + z) = 0.002 - 0.026. The selection technique can be extended to z ~ 7, suggesting that the medium-band observation can be powerful in identifying quasars even at the re-ionization epoch.

Patient-Specific Quality Assurance in a Multileaf Collimator-Based CyberKnife System Using the Planar Ion Chamber Array

  • Yoon, Jeongmin;Lee, Eungman;Park, Kwangwoo;Kim, Jin Sung;Kim, Yong Bae;Lee, Ho
    • Progress in Medical Physics
    • /
    • v.29 no.2
    • /
    • pp.59-65
    • /
    • 2018
  • This paper describes the clinical use of the dose verification of multileaf collimator (MLC)-based CyberKnife plans by combining the Octavius 1000SRS detector and water-equivalent RW3 slab phantom. The slab phantom consists of 14 plates, each with a thickness of 10 mm. One plate was modified to support tracking by inserting 14 custom-made fiducials on surface holes positioned at the outer region of $10{\times}10cm^2$. The fiducial-inserted plate was placed on the 1000SRS detector and three plates were additionally stacked up to build the reference depth. Below the detector, 10 plates were placed to avoid longer delivery times caused by proximity detection program alerts. The cross-calibration factor prior to phantom delivery was obtained by performing with 200 monitor units (MU) on the field size of $95{\times}92.5mm^2$. After irradiation, the measured dose distribution of the coronal plane was compared with the dose distribution calculated by the MultiPlan treatment planning system. The results were assessed by comparing the absolute dose at the center point of 1000SRS and the 3-D Gamma (${\gamma}$) index using 220 patient-specific quality assurance (QA). The discrepancy between measured and calculated doses at the center point of 1000SRS detector ranged from -3.9% to 8.2%. In the dosimetric comparison using 3-D ${\gamma}$-function (3%/3 mm criteria), the mean passing rates with ${\gamma}$-parameter ${\leq}1$ were $97.4%{\pm}2.4%$. The combination of the 1000SRS detector and RW3 slab phantom can be utilized for dosimetry validation of patient-specific QA in the CyberKnife MLC system, which made it possible to measure absolute dose distributions regardless of tracking mode.

A STUDY ON THE THERMAL DIFFUSION THROUGH VARIOUS THICKNESS OF BASE AND RESTORATION MATERIALS (수복물(修復物)과 양장재(襄裝材)의 열확산(熱擴散)에 관(關)한 연구(硏究))

  • Yoon, Dong-Ho;Park, Sang-Jin;Min, Byung-Soon;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.11 no.1
    • /
    • pp.77-88
    • /
    • 1985
  • The purpose of this study was to examine the thermal diffusion through bases and restorations. The three principle types of base and two restorative materials were included in this study. They were representive brands of a zinc phosphate cement, a zinc oxide-eugenol cement, a calcium hydroxide paste, an amalgam and a composite resin (table 1). The specimens were prepared by placing the bases or restorative materials in laminated plastic molds. 5-mm diameter holes were prepared in the center of square of plastics which were 0.5, 1.0, 2.0, and 3.0mm thick respectively (fig. 1). All materials were manipulated in accordance with manufacturer's recommended proportions. All experimental procedures were carried out dividing them into eight different groups (table 2). Thermal diffusion was measured by means of digital thermometer (DP-100, RKC. instrument Inc. JAPAN) with the surface thermocouple placed on bottom surface of the specimen applying a constant source of heat and cold to the top surface of the each specimen. The thermal stimulus temperature applied on the each specimen surface was in the range of $60^{\circ}C$, $0^{\circ}C$ and $-50^{\circ}C$ respectively. The thermal change were recorded automatically on the multi-Pen recorder (R-16, Rikadenki, Co. JAPAN) connected with thermocouple tips which were centered on the bottom of the specimen. The following results were as follows, 1. Temperature diffusion was highest through amalgam and slowest through the composite resin. 2. As the thickness of restorations increased, the temperature change was decreased. 3. Thermal diffusion was slowest in the presence of zinc oxide-eugenol bases, followed by calcium hydroxide and zinc phosphate cement. 4. The efficiency of the cement bases in providing thermal insulation was dependent on their thickness beneath the restorations. 5. Thermal change was great in the range of $60^{\circ}C$ and $-50^{\circ}C$, but little in the range of $0^{\circ}C$.

  • PDF

BOND STRENGTH OF BONDED AMALGAM USING DENIAL ADHESIVES (치과용 접착제를 사용한 접착 아말감의 결합 강도)

  • Kam, Dong-Hoon;Lee, Sang-Dae;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.284-295
    • /
    • 1999
  • The purpose of this study was to measure and analyze the bond strength of bonded amalgam using dental adhesives and to compare this with light-curing composite resin. Sections 8mm in diameter were punched out from the labial surface of bovine anterior teeth. These were embedded in clear acrylic resin blocks with labial surface facing out. 55 specimens were made for enamel and dentin each. After dividing these into 5 groups, group 1: Superbond C&B, group 2: Panavia 21, group 3: All-Bond 2, group 4: Fuji I Glass Ionomer Luting Cement, group 5: Scotchbond Multi-Purpose(Restorative Z-100), molds with holes of 6.3mm in diameter and 1.5mm in depth were placed over the specimens. The exposed tooth surfaces were treated with adhesives and the molds were filled with amalgam. In group 5, the mold was filled with composite resin and light-cured for 40 seconds. The author measured all specimens for bond strength 24 hours after amalgam filing and analyzed fracture surfaces. The following results were obtained: 1. Among the dentin groups, groups 1, 2 and 4 showed significantly lower bond strength compared with group 5(P<0.05). 2. Among the enamel groups, group 4 showed significantly lower bond strength compared with group 5(P<0.05). 3. In group 2, 2D showed significantly lower bond strength compared with group 2E(P<0.05). Other adhesives showed no such differences in bond strength between dentin and enamel(P>0.05). 4. Cohesive failure was observed in groups 1E and 5D, while mixed failure was seen in groups 1 and 5. Only adhesive failures were noted in groups 2, 3, 4.

  • PDF

Numerical Analysis of Coupled Thermo-Hydro-Mechanical (THM) Behavior at Korean Reference Disposal System (KRS) Using TOUGH2-MP/FLAC3D Simulator (TOUGH2-MP/FLAC3D를 이용한 한국형 기준 처분시스템에서의 열-수리-역학적 복합거동 특성 평가)

  • Lee, Changsoo;Cho, Won-Jin;Lee, Jaewon;Kim, Geon Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.183-202
    • /
    • 2019
  • For design and performance assessment of a high-level radioactive waste (HLW) disposal system, it is necessary to understand the characteristics of coupled thermo-hydro-mechanical (THM) behavior. However, in previous studies for the Korean Reference HLW Disposal System (KRS), thermal analysis was performed to determine the spacing of disposal tunnels and interval of disposition holes without consideration of the coupled THM behavior. Therefore, in this study, TOUGH2-MP/FLAC3D is used to conduct THM modeling for performance assessment of the Korean Reference HLW Disposal System (KRS). The peak temperature remains below the temperature limit of $100^{\circ}C$ for the whole period. A rapid rise of temperature caused by decay heat occurs in the early years, and then temperature begins to decrease as decay heat from the waste decreases. The peak temperature at the bentonite buffer is around $96.2^{\circ}C$ after about 3 years, and peak temperature at the rockmass is $68.2^{\circ}C$ after about 17 years. Saturation of the bentonite block near the canister decreases in the early stage, because water evaporation occurs owing to temperature increase. Then, saturation of the bentonite buffer and backfill increases because of water intake from the rockmass, and bentonite buffer and backfill are fully saturated after about 266 years. The stress is calculated to investigate the effect of thermal stress and swelling pressure on the mechanical behavior of the rockmass. The calculated stress is compared to a spalling criterion and the Mohr-Coulumb criterion for investigation of potential failure. The stress at the rockmass remains below the spalling strength and Mohr-Coulumb criterion for the whole period. The methodology of using the TOUGH2-MP/FLAC3D simulator can be applied to predict the long-term behavior of the KRS under various conditions; these methods will be useful for the design and performance assessment of alternative concepts such as multi-layer and multi-canister concepts for geological spent fuel repositories.

A Study on the Landscape Interpretation of Songge Byeoleop(Korean Villa) Garden at Jogyedong, Mt. Bukhansan near Seoul for the Restoration (북한산 조계동 송계별업(松溪別業) 정원 복원을 위한 경관해석)

  • Rho, Jae-Hyun;Song, Suk-Ho;Jo, Jang-Bin;Sim, Woo-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.4
    • /
    • pp.1-17
    • /
    • 2018
  • This study was conducted to interpret the landscape of Songge Byeoleop(Korean villa) garden at Jogyedong, Bukhansan near Seoul which was built in the mid 17C. to restore through the literature reviews and field surveys. The results were as follows; Songge Byeoleop garden was a royal villa, constructed at King Injo24(1646) of Joseon dynasty by prince Inpyeong(麟坪大君), Lee, Yo(李?, 1622~1658), the third son of King Injo who was a brother of King Hyojong. It was a royal villa, Seokyang-lu under Mt. Taracsan of Gyendeokbang, about 7km away in the straight line from main building. It was considered that the building system was a very gorgeous with timber coloring because of owner's special situation who was called the great prince. The place of Songge Byeoleop identity and key landscape of the place were consisted with Gucheon waterfall and the sound of the water with multi-layered waterfall which might be comparable to the waterfall of Yeosan in China. After the destruction of the building, the place was used for the royal tomb quarry, but there was a mark stone for forbidden quarry. The Inner part of Songge Beoleop, centered with Jogedongcheon, Chogye-dong, composted beautifully with the natural sceneries of Gucheon waterfall, Handam and Changbeok, and artificial structures, such as Bihong-bridge, Boheogak, Yeonghyudang and Gyedang. In addition, the existing Chinese characters, 'Songge Beoleop' and 'Gucheoneunpog' carved in the rocks are literary languages and place markings symbolizing with the contrast of the different forests and territories. They gave the names of scenery to the rock and gave meaning to them. Particularly, Gucheon waterfall which served as a visual terminal point, is a cascade type with multi-staged waterfall. and the lower part shows the topographical characteristics of the Horse Bowl-shaped jointed with port-holes. On the other hand, the outer part is divided into the spaces for the main entrance gate, a hanging bridge character, a bridge connecting the inside and the outside, and Yeonghyudang part for the purpose of living. Also in the Boheogak area, dual view frame structures are made to allow the view of the four sides including the width and the perimeter of the villa. In addition, at the view point in Bihong-bridge, the Gucheon water fall divides between the sacred and profane, and crosses the Bihong-bridge and climbs to the subterranean level.