• Title/Summary/Keyword: multi-field coupling

Search Result 68, Processing Time 0.026 seconds

Conversion of Extraordinary Waves into Upper Hybrid Waves in Inhomogeneous Plasmas

  • Kim, Gyeong-Seop;Kim, Eun-Hwa;Lee, Dong-Hun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.35-35
    • /
    • 2004
  • Inhomogeneity Is important in wave coupling and mode conversion. We numerically examine the conversion of extraordinary(X) waves into upper hybrid(UH) waves in inhomogeneous plasmas by using a three-dimensional multi-fluid numerical model. A one-dimensional Inhomogeneous density profile is assumed in a cold and collisionless plasma. The density gradient is taken to be perpendicular to the magnetic field. An impulsive input is assumed to excite the X waves in the inhomogeneous box model. (omitted)

  • PDF

A Design Method for Direction Selective Structural-acoustic Coupled Radiator (구조-음향 연성현상을 갖는 방사 방향을 가질 수 있는 방사체 설계방법)

  • Seo, Hee-Seon;Kim, Yang-Hann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.225-231
    • /
    • 2005
  • This paper presents a design method for the structural-acoustic coupled radiator that can emit sound in the desired direction. A coupled system that has a finite space and a semi-infinite space separated by two flexible walls and an opening is considered. An objective function is selected to maximize radiation power on a main axis and minimize a side lobe level. To get initial values, prediction of a pressure distribution on field points and radiation pattern of the structural-acoustic coupling system is shown at a coupled-resonant frequency. Three different optimization methods are adapted to design the coupled radiator. Pressure and intensity distribution of the designed radiator is presented.

Double-walled carbon nanotubes: synthesis, structural characterization, and application

  • Kim, Yoong Ahm;Yang, Kap-Seung;Muramatsu, Hiroyuki;Hayashi, Takuya;Endo, Morinobu;Terrones, Mauricio;Dresselhaus, Mildred S.
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.77-88
    • /
    • 2014
  • Double walled carbon nanotubes (DWCNTs) are considered an ideal model for studying the coupling interactions between different concentric shells in multi-walled CNTs. Due to their intrinsic coaxial structures they are mechanically, thermally, and structurally more stable than single walled CNTs. Geometrically, owing to the buffer-like function of the outer tubes in DWCNTs, the inner tubes exhibit exciting transport and optical properties that lend them promise in the fabrication of field-effect transistors, stable field emitters, and lithium ion batteries. In addition, by utilizing the outer tube chemistry, DWCNTs can be useful for anchoring semiconducting quantum dots and also as effective multifunctional fillers in producing tough, conductive transparent polymer films. The inner tubes meanwhile preserve their excitonic transitions. This article reviews the synthesis of DWCNTs, their electronic structure, transport, and mechanical properties, and their potential uses.

Geometric Optimization Algorithm for Path Loss Model of Riparian Zone IoT Networks Based on Federated Learning Framework

  • Yu Geng;Tiecheng Song;Qiang Wang;Xiaoqin Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1774-1794
    • /
    • 2024
  • In the field of environmental sensing, it is necessary to develop radio planning techniques for the next generation Internet of Things (IoT) networks over mixed terrains. Such techniques are needed for smart remote monitoring of utility supplies, with links situated close to but out of range of cellular networks. In this paper, a three-dimension (3-D) geometric optimization algorithm is proposed, considering the positions of edge IoT devices and antenna coupling factors. Firstly, a multi-level single linkage (MLSL) iteration method, based on geometric objectives, is derived to evaluate the data rates over ISM 915 MHz channels, utilizing optimized power-distance profiles of continuous waves. Subsequently, a federated learning (FL) data selection algorithm is designed based on the 3-D geometric positions. Finally, a measurement example is taken in a meadow biome of the Mexican Colima district, which is prone to fluvial floods. The empirical path loss model has been enhanced, demonstrating the accuracy of the proposed optimization algorithm as well as the possibility of further prediction work.

The Second Annealing Effect on Giant Magnetoresistance Properties of PtMn Based Spin Valve (이차 열처리가 PtMn계 스핀밸브의 거대자기저항 특성에 미치는 영향)

  • 김광윤;김민정;김희중
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.2
    • /
    • pp.72-77
    • /
    • 2001
  • Top spin valve films with PtMn antiferromagnetic layers were deposited using a multi-target dc magnetron sputtering in (100)Si substrates overcoated with 500 $\AA$ of Al$_2$O$_3$. Firstly, the post-deposition annealing was performed at 270$\^{C}$ in a unidirectional magnetic field of 3 kOe to induce the crystallographic transformation of the PtMn layer from a fcc (111) to a fct (111) structure. Secondly, the spin valve films were annealed without magnetic fields and magnetic properties were measured. In Si/A1$_2$O$_3$ (500$\AA$)/Ta(50$\AA$)NiFe(40$\AA$)/CoFe(17$\AA$)/Cu(28$\AA$)/CoFe (30$\AA$)PtMn(200$\AA$)Ta(50$\AA$) top spin valve samples, the MR ratio decreased slowly with increasing annealing temperature up to 325$\^{C}$. But above 325$\^{C}$, the MR ratio decreased rapidly to 1%, due to a collapse of the exchange coupling between a antiferromagnetic layer and a pinned layer with increasing annealing temperature. Also above 325$\^{C}$, the exchange biased field rapidly decreased and the interlayer coupling field rapidly increased with increasing annealing temperature. A change in the interlayer coupling field was resulted from the increase in interface roughness due to Mn-interdiffusion through the grain boundaries. We confirmed the temperature in changing magnetic properties agreed well with the blocking temperature of PtMn based spin valve structure.

  • PDF

Laterally Loaded Soil-Pile Interaction Analysis in Frequency Domain (횡하중을 받는 지반-말뚝 상호작용계의 동적 주파수 응답해석)

  • 김문겸;임윤묵;김민규;조석호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.437-448
    • /
    • 2000
  • In this study, a numerical analysis method for soil-pile interaction in frequency domain problem is presented. The total soil-pile interaction system is divided into two parts so called near field and far field. In the near field, beam elements are used lot a pile and plain strain finite elements for soil. In the far field, dynamic fundamental solution for multi-layered half planes based on boundary element formulation is adopted lot soil. These two fields are coupled using FE-BE coupling technique. In order to verify the proposed soil-pile interaction analysis, the dynamic responses of pile on multi-layered half planes are simulated and the results are compared with the experimental results. Also, various numerical analyses of piles considering different conditions of soil-pile interaction system are performed to examine the dynamic behavior of the system. It has been found that the developed method which satisfies the radiation conditions of multi-layered half planes can be applied to various structure systems effectively in frequency domain.

  • PDF

Wind-induced responses and equivalent static wind loads of tower-blade coupled large wind turbine system

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.485-505
    • /
    • 2014
  • This study aimed to develop an approach to accurately predict the wind models and wind effects of large wind turbines. The wind-induced vibration characteristics of a 5 MW tower-blade coupled wind turbine system have been investigated in this paper. First, the blade-tower integration model was established, which included blades, nacelle, tower and the base of the wind turbine system. The harmonic superposition method and modified blade element momentum theory were then applied to simulate the fluctuating wind field for the rotor blades and tower. Finally, wind-induced responses and equivalent static wind loads (ESWL) of the system were studied based on the modified consistent coupling method, which took into account coupling effects of resonant modes, cross terms of resonant and background responses. Furthermore, useful suggestions were proposed to instruct the wind resistance design of large wind turbines. Based on obtained results, it is shown from the obtained results that wind-induced responses and ESWL were characterized with complicated modal responses, multi-mode coupling effects, and multiple equivalent objectives. Compared with the background component, the resonant component made more contribution to wind-induced responses and equivalent static wind loads at the middle-upper part of the tower and blades, and cross terms between background and resonant components affected the total fluctuation responses, while the background responses were similar with the resonant responses at the bottom of tower.

Analysis of Piezoelectric Ceramic Multi-layer Actuators Based on the Electro-mechanical Coupled Meshless Method (전기-기계 결합 하중을 받는 압전 세라믹 다층 작동기의 무요소 해석)

  • Kim, Hyun-Chul;Guo, Xianghua;Kim, Won-Seok;Fang, Daining;Lee, Jung-Ju
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.101-108
    • /
    • 2007
  • This paper presents an efficient meshless method for analyzing cracked piezoelectric structures subjected to mechanical and electrical loading. The method employs an element free Galerkin (EFG) formulation and an enriched basic function as well as special shape functions that contain discontinuous derivatives. Based on the moving least squares (MLS) interpolation approach, The EFG method is one of the promising methods for dealing with problems involving progressive crack growth. Since the method is meshless and no element connectivity data are needed, the burdensome remeshing procedure required in the conventional finite element method (FEM) is avoided. The numerical results show that the proposed method yields an accurate near-tip stress field in an infinite piezoelectric plate containing an interior hole. Another example is to study a ceramic multilayer actuator. The proposed model was found to be accurate in the simulation of stress and electric field concentrations due to the abrupt end of an internal electrode.

Nano-continuum multi scale analysis using node deactivation techniques (절점 비활성화 기법을 적용한 나노-연속체 멀티스케일 해석 기법)

  • Rhee Seung-Yun;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.395-402
    • /
    • 2006
  • In analyzing the nano-scale phenomena or behaviors of nano devices or materials, it is often desirable to deal with more atoms than can be treated only with a full atomistic simulation. However, even now, it is advisable to apply the atomistic simulation to the narrow region where the deformation field changes rapidly but to apply the conventional continuum model to the region far from that region. This equivalent continuum model can be formulated by applying the Cauchy-Born rule to the exact atomistic potential as in the quasicontinuum method. To couple the atomistic model with the equivalent continuum model, continuum displacements are conformed to the molecular displacements at the discrete positions of the atoms within the bridging domain. To satisfy the coupling constraints, we apply the Lagrange multiplier method. The continuum model in the bridging model should be applied on the region where the deformation field changes gradually. Then we can make the nodal spacing in the continuum model be much larger than the atomic spacing. In the first step, we generate the atomic-resolution mesh with the nodal spacing equal to the atomic spacing, and then we eliminate the nodal degrees of freedom adaptively using the node deactivation techniques. We eliminate more DOFs as the regions are more far from the atomistic region. Computing time and computational resources can be greatly reduced by the present node deactivation technique in multi scale analysis.

  • PDF

Fabrication, AC Loss Measurement and Analysis of Bi-2223 Conductors with Respect to Various Twist Pitch (트위스트 피치를 고려한 Bi-2223 선재 제작과 AC 손실 측정 및 분석)

  • Jang, Mi-Hye;Chu, Yong;Lim, Jun-Hyung;Joo, Jin-Ho;Ko, Tae-Kuk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.11
    • /
    • pp.589-595
    • /
    • 2000
  • In this papre, AC losses of Bi-2223 tapes with different twist pitch of superconducting core were fabricated, measured and analyzed. These samples produced by a powder-in-tube method are multi-filamentary tape with Ag matrix. Also, it's produced by non-twist and different twist pitch(8, 10, 13, 30, 50, 70 mn). The critical current measurement was carried out under the environment in Liquid nitrogen and in zero field by 4-probe method. And the AC loss measurement was carried out under the environment of applied time-varying transport current by transport method. From experiment, the critical current is larger non-twist than twisted filament. And, the AC loss by Norris equation is higher non-twisted tape than 13mm twisted tape. Also, it is confirmed that of AC loss of tape having non-twist pitch larger than those having differnet twist pitch.

  • PDF