Analysis of Piezoelectric Ceramic Multi-layer Actuators Based on the Electro-mechanical Coupled Meshless Method

전기-기계 결합 하중을 받는 압전 세라믹 다층 작동기의 무요소 해석

  • Kim, Hyun-Chul (Department of Mechanical Engineering, ME3033, KAIST) ;
  • Guo, Xianghua (Department of Engineering Mechanics, Tsinghua University) ;
  • Kim, Won-Seok (Department of Mechanical Engineering, ME3033, KAIST) ;
  • Fang, Daining (Department of Engineering Mechanics, Tsinghua University) ;
  • Lee, Jung-Ju (Department of Mechanical Engineering, ME3033, KAIST)
  • 김현철 (한국과학기술원 기계공학과) ;
  • ;
  • 김원석 (한국과학기술원 기계공학과) ;
  • ;
  • 이정주 (한국과학기술원 기계공학과)
  • Published : 2007.03.01

Abstract

This paper presents an efficient meshless method for analyzing cracked piezoelectric structures subjected to mechanical and electrical loading. The method employs an element free Galerkin (EFG) formulation and an enriched basic function as well as special shape functions that contain discontinuous derivatives. Based on the moving least squares (MLS) interpolation approach, The EFG method is one of the promising methods for dealing with problems involving progressive crack growth. Since the method is meshless and no element connectivity data are needed, the burdensome remeshing procedure required in the conventional finite element method (FEM) is avoided. The numerical results show that the proposed method yields an accurate near-tip stress field in an infinite piezoelectric plate containing an interior hole. Another example is to study a ceramic multilayer actuator. The proposed model was found to be accurate in the simulation of stress and electric field concentrations due to the abrupt end of an internal electrode.

Keywords

References

  1. S. Kumar and R. N. Singh, 'Effect of the Mechanical Boundary Condition at the Crack Surfaces on the Stress Distribution at the Crack Tip in Piezoelectric Materials,' Material Science and Engineering A, Vol.252, No.1, pp.64-77, 1998 https://doi.org/10.1016/S0921-5093(98)00629-7
  2. D. Fang, H. Qi and Z. Yao, 'Numerical Analysis of Crack Propagation in Piezoelectric Ceramics,' Fatigue and Fracture of Engineering Materials and Structures, Vol.21, pp.1371- 1380, 1998 https://doi.org/10.1046/j.1460-2695.1998.00084.x
  3. W. Chen and C. S. Lynch, 'Finite Element Analysis of Cracks in Ferroelectric Ceramic Materials,' Engineering Fracture Mechanics, Vol.64, pp.539-562, 1999 https://doi.org/10.1016/S0013-7944(99)00084-3
  4. C. L. Hom and N. Chankar, 'A Numerical Analysis of Relaxor Ferroelectric Multilayered Actuators and 2-2 Composite Arrays,' Smart Materials and Structures, Vol.4, pp.305-317, 1995 https://doi.org/10.1088/0964-1726/4/4/011
  5. S. L. Dos Santos E Lucato, D. C. Lupascu, M. Kamlah, J. Rodel and C. S. Lynch, 'Constraintinduced Crack Initiation at Electrode Edges in Piezoelectric Ceramics,' Acta Materialia, Vol.49, No.14, pp.2751-2759, 2001 https://doi.org/10.1016/S1359-6454(01)00169-0
  6. Y. Shindo, F. Narita and H. Sosa, 'Electroelastic Analysis of Piezoelectric Ceramics with Surface Electrodes,' International Journal of Engineering Science, Vol.36, No.9, pp.1001- 1009, 1998 https://doi.org/10.1016/S0020-7225(98)00007-X
  7. Y. Shindo, M. Yoshida, F. Narita and K. Horiguchi, 'Electroelastic Field Concentrations Ahead of Electrodes in Multilayer Piezoelectric Actuators: Experiment and Finite Element Simulation,' Journal of the Mechanics and Physics of Solids, Vol.52, No.5, pp.1109-1124, 2004 https://doi.org/10.1016/j.jmps.2003.09.017
  8. P. Gaudenzi and K. J. Bathe, 'An Iterative Finite Element Procedure for the Analysis of Piezoelectric Continua,' Journal of Intelligent Material Systems and Structures, Vol.2, pp.266-273, 1995
  9. B. Nayroles, G. Touzot and P. Villon, 'Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements,' Computational Mechanics, Vol.10, No.1, pp.307- 318, 1992 https://doi.org/10.1007/BF00364252
  10. T. Belytschko, Y. Y. Lu and L. Gu, 'Element- free Methods,' International Journal of Numerical Methods in Engineering, Vol.37, pp.229-256, 1994 https://doi.org/10.1002/nme.1620370205
  11. C. A. Durate and J. T. Oden, 'HP Clouds a Meshless Method to Solve Boundary-value Problems,' Technical Report 95-05, Texas Institute for Computational and Applied Mathematics, University of Texas at Austin, 1995
  12. S. N. Atluri and T. Zhu, 'A New Meshless Local-Petrov-Galerkin(MLPG) approach in Computational Mechanics,' Computational Mechanics, Vol.22, No.2, pp.117-127, 1998 https://doi.org/10.1007/s004660050346
  13. S. De and K. J. Bathe, 'The Method of Finite Spheres,' Computational Mechanics, Vol.25, No.4, pp.329-345, 2000 https://doi.org/10.1007/s004660050481
  14. T. Belytschko and M. Flemming, 'Smoothing, Enrichment and Contact in the Element-free Galerkin Method,' Computers and Structures, Vol.71, No.2, pp.173-195, 1999 https://doi.org/10.1016/S0045-7949(98)00205-3
  15. D. Organ, M. Flemming, T. Terry and T. Belytschko, 'Continuous Meshless Approximation for Nonconvex Bodies by Diffraction and Transparency,' Computational Mechanics, Vol.18, No.3, pp.225-235, 1996 https://doi.org/10.1007/BF00369940
  16. H. Sosa and Y. Pak, 'Three Dimensional Eigenfunction Analysis of a Crack in a Piezoelectric Materials,' International Journal of Solids and Structures, Vol.26, No.1, pp.1-15, 1990 https://doi.org/10.1016/0020-7683(90)90090-I
  17. T. Y. Zhang, C. F. Qian and P. Tong, 'Linear Electro-elastic Analysis of a Cavity or a Crack in a Piezoelectric Material,' International Journal of Solids and Structures, Vol.35, No.17, pp.2121-2149, 1998 https://doi.org/10.1016/S0020-7683(97)00168-6
  18. X. Gong and Z. Suo, 'Reliability of Ceramic Multilayer Actuators: A Nonlinear Finite Element Simulation,' Journal of the Mechanics and Physics of Solids, Vol.44, No.5, pp.751- 769, 1996 https://doi.org/10.1016/0022-5096(95)00026-7
  19. M. Fleming, Y. A. Chu, B. Moran and T. Belytschko, 'Enriched Element-free Galerkin Methods for Crack Tip Fields,' International Journal of Numerical Methods in Engineering, Vol.40, No.8, pp.1483-1504, 1998 https://doi.org/10.1002/(SICI)1097-0207(19970430)40:8<1483::AID-NME123>3.0.CO;2-6
  20. S. I. Cho, 'Dynamic Stress Intensity Factor KIII of Crack Propagating with Constant Velocity in Orthotropic Disk Plate Subjected to Longitudinal Shear Stress,' Transactions of KSAE, Vol.4. No.2, pp.69-79, 1996