• Title/Summary/Keyword: multi-dimensional scheme

Search Result 170, Processing Time 0.029 seconds

A Study on the Effective Interpolation Methods to the Fluid-Structure Interaction Analysis for Large-Scale Structure (거대 구조물의 유체-구조 연계 해석을 위한 효과적인 보간기법에 대한 연구)

  • Lee, Ki-Du;Lee, Young-Shin;Kim, Dong-Soo;Lee, Dae-Yearl
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.433-441
    • /
    • 2009
  • Generally, the events in nature have multi-disciplinary characteristics. To solve this problems, these days loosely coupled methods are widely applied because of advantage of solvers which are already developed and well proved. Those solvers use different mesh system, so transformation and mapping of data are vital in the field of fluid-structure interaction(FSI). In this paper, the interpolation of deformation which is used globally and compactly supported radial basis functions(RBF), and mapping of force which use principle of virtual work are examined for computing time and accuracy to compare ability with simple 3-D problem. As the results, interpolation scheme of compactly supported radial basis functions are useful to interpolation and mapping for large-scale airplane in FSI with a k-dimensional tree(kd-tree) which is a space-partitioning data structure for organizing points in a k-dimensional space.

Representation of Three-dimensional Polygonal Mesh Models Using Hierarchical Partitioning and View dependent Progressive Transmission (계층적 분할을 이용한 삼차원 다각형 메쉬 모델의 표현 및 인간 시점에 따른 점진적 전송 방법)

  • 김성열;호요성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.132-140
    • /
    • 2003
  • In this paper, we propose a new scheme for view-dependent transmission of three-dimensional (3-D) polygonal mesh models with hierarchial partitioning. In order to make a view-dependent representation of 3-D mesh models, we combine sequential and progressive mesh transmission techniques. By setting higher priorities to visible parts than invisible parts, we can obtain good qualify of 3-D models in a limited transmission bandwidth. In this paper, we use a multi -layer representation of 3-D mesh models based on hierarchical partitioning. After representing the 3-D mesh model in a hierarchical tree, we determine resolutions of partitioned submeshes in the last level. Then, we send 3-D model data by view-dependent selection using mesh merging and mesh splitting operations. By the partitioned mesh merging operation, we can reduce the joint boundary information coded redundantly in the partitioned submeshes. We may transmit additional mesh information adaptively through the mesh spritting operation.

A Quadtree-based Disparity Estimation for 3D Intermediate View Synthesis (3차원 중간영상의 합성을 위한 쿼드트리기반 변이추정 방법)

  • 성준호;이성주;김성식;하태현;김재석
    • Journal of Broadcast Engineering
    • /
    • v.9 no.3
    • /
    • pp.257-273
    • /
    • 2004
  • In stereoscopic or multi-view three dimensional display systems, the synthesis of intermediate sequences is inevitably needed to assure look-around capability and continuous motion parallax so that it could enhance comfortable 3D perception. The quadtree-based disparity estimation is one of the most remarkable methods for synthesis of Intermediate sequences due to the simplicity of its algorithm and hardware implementation. In this paper, we propose two ideas in order to reduce the annoying flicker at the object boundaries of synthesized intermediate sequences by quadtree-based disparity estimation. First, new split-scheme provides more consistent auadtree-splitting during the disparity estimation. Secondly, adaptive temporal smoothing using correlation between present frame and previous one relieves error of disparity estimation. Two proposed Ideas are tested by using several stereoscopic sequences, and the annoying flickering is remarkably reduced by them.

A Design Process for Reduction of Pressure Drop of Air-cooled Condenser for Waste Heat Recovery System (폐열 회수 시스템용 공랭식 응축기의 압력 손실 저감 설계)

  • Bae, Sukjung;Heo, Hyungseok;Park, Jeongsang;Lee, Hongyeol;Kim, Charnjung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.81-91
    • /
    • 2013
  • A novel design process of a parallel multi-flow type air-cooled condenser of a dual-loop waste heat recovery system with Rankine steam cycles for improving the fuel efficiency of gasoline automobiles has been investigated focusing on reduction of the pressure drop inside the micro-tubes. The low temperature condenser plays a role to dissipate heat from the system by condensing the low temperature loop working fluid sufficiently. However, the refrigerant has low evaporation temperature enough to recover the waste from engine coolant of about $100^{\circ}C$ but has small saturation enthalpy so that excessive mass flow rate of the LT working fluid, e.g., over 150 g/s, causes enormously large pressure drop of the working fluid to maintain the heat dissipation performance of more than 20 kW. This paper has dealt with the scheme to design the low temperature condenser that has reduced pressure drop while ensuring the required thermal performance. The number of pass, the arrangement of the tubes of each pass, and the positions of the inlet and outlet ports on the header are most critical parameters affecting the flow uniformity through all the tubes of the condenser. For the purpose of the performance predictions and the parametric study for the LT condenser, we have developed a 1-dimensional user-friendly performance prediction program that calculates feasibly the phase change of the working fluid in the tubes. An example is presented through the proposed design process and compared with an experiment.

Efficient 3D Modeling of CSEM Data (인공송신원 전자탐사 자료의 효율적인 3차원 모델링)

  • Jeong, Yong-Hyeon;Son, Jeong-Sul;Lee, Tae-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.75-80
    • /
    • 2009
  • Despite its flexibility to complex geometry, three-dimensional (3D) electromagnetic(EM) modeling schemes using finite element method (FEM) have been faced to practical limitation due to the resulting large system of equations to be solved. An efficient 3D FEM modeling scheme has been developed, which can adopt either direct or iterative solver depending on the problems. The direct solver PARDISO can reduce the computing time remarkably by incorporating parallel computing on multi-core processor systems, which is appropriate for single frequency multi-source configurations. When limited memory, the iterative solver BiCGSTAB(1) can provide fast and stable convergence. Efficient 3D simulations can be performed by choosing an optimum solver depending on the computing environment and the problems to be solved. This modeling includes various types of controlled-sources and can be exploited as an efficient engine for 3D inversion.

  • PDF

Development of an Improved Numerical Methodology for Design and Modification of Large Area Plasma Processing Chamber

  • Kim, Ho-Jun;Lee, Seung-Mu;Won, Je-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.221-221
    • /
    • 2014
  • The present work proposes an improved numerical simulator for design and modification of large area capacitively coupled plasma (CCP) processing chamber. CCP, as notoriously well-known, demands the tremendously huge computational cost for carrying out transient analyses in realistic multi-dimensional models, because electron dissociations take place in a much smaller time scale (${\Delta}t{\approx}10-8{\sim}10-10$) than time scale of those happened between neutrals (${\Delta}t{\approx}10-1{\sim}10-3$), due to the rf drive frequencies of external electric field. And also, for spatial discretization of electron flux (Je), exponential scheme such as Scharfetter-Gummel method needs to be used in order to alleviate the numerical stiffness and resolve exponential change of spatial distribution of electron temperature (Te) and electron number density (Ne) in the vicinity of electrodes. Due to such computational intractability, it is prohibited to simulate CCP deposition in a three-dimension within acceptable calculation runtimes (<24 h). Under the situation where process conditions require thickness non-uniformity below 5%, however, detailed flow features of reactive gases induced from three-dimensional geometric effects such as gas distribution through the perforated plates (showerhead) should be considered. Without considering plasma chemistry, we therefore simulated flow, temperature and species fields in three-dimensional geometry first, and then, based on that data, boundary conditions of two-dimensional plasma discharge model are set. In the particular case of SiH4-NH3-N2-He CCP discharge to produce deposition of SiNxHy thin film, a cylindrical showerhead electrode reactor was studied by numerical modeling of mass, momentum and energy transports for charged particles in an axi-symmetric geometry. By solving transport equations of electron and radicals simultaneously, we observed that the way how source gases are consumed in the non-isothermal flow field and such consequences on active species production were outlined as playing the leading parts in the processes. As an example of application of the model for the prediction of the deposited thickness uniformity in a 300 mm wafer plasma processing chamber, the results were compared with the experimentally measured deposition profiles along the radius of the wafer varying inter-electrode gap. The simulation results were in good agreement with experimental data.

  • PDF

Application of Multi-Dimensional Precipitation Models to the Sampling Error Problem (관측오차문제에 대한 다차원 강우모형의 적용)

  • Yu, Cheol-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.441-447
    • /
    • 1997
  • Rainfall observation using rain gage network or satellites includes the sampling error depending on the observation methods or plans. For example, the sampling using rain gages is continuous in time but discontinuous in space, which is nothing but the source of the sampling error. The sampling using satellites is the reverse case that continuous in space and discontinuous in time. The sampling error may be quantified by use of the temporal-spatial characteristics of rainfall and the sampling design. One of recent works on this problem was done by North and Nakamoto (1989), who derived a formulation for estimating the sampling error based on the temporal-spatial rainfall spectrum and the design scheme. The formula enables us to design an optimal rain gage network or a satellite operation plan providing the statistical characteristics of rainfall. In this paper the formula is reviewed and applied for the sampling error problems using several multi-dimensional precipitation models. The results show the limitation of the formulation, which cannot distinguish the model difference in case the model parameters can reproduce similar second order statistics of rainfall. The limitation can be improved by developing a new way to consider the higher order statistics, and eventually the probability density function (PDF) of rainfall.

  • PDF

An Improved Particle Swarm Optimization Algorithm for Care Worker Scheduling

  • Akjiratikarl, Chananes;Yenradee, Pisal;Drake, Paul R.
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.171-181
    • /
    • 2008
  • Home care, known also as domiciliary care, is part of the community care service that is a responsibility of the local government authorities in the UK as well as many other countries around the world. The aim is to provide the care and support needed to assist people, particularly older people, people with physical or learning disabilities and people who need assistance due to illness to live as independently as possible in their own homes. It is performed primarily by care workers visiting clients' homes where they provide help with daily activities. This paper is concerned with the dispatching of care workers to clients in an efficient manner. The optimized routine for each care worker determines a schedule to achieve the minimum total cost (in terms of distance traveled) without violating the capacity and time window constraints. A collaborative population-based meta-heuristic called Particle Swarm Optimization (PSO) is applied to solve the problem. A particle is defined as a multi-dimensional point in space which represents the corresponding schedule for care workers and their clients. Each dimension of a particle represents a care activity and the corresponding, allocated care worker. The continuous position value of each dimension determines the care worker to be assigned and also the assignment priority. A heuristic assignment scheme is specially designed to transform the continuous position value to the discrete job schedule. This job schedule represents the potential feasible solution to the problem. The Earliest Start Time Priority with Minimum Distance Assignment (ESTPMDA) technique is developed for generating an initial solution which guides the search direction of the particle. Local improvement procedures (LIP), insertion and swap, are embedded in the PSO algorithm in order to further improve the quality of the solution. The proposed methodology is implemented, tested, and compared with existing solutions for some 'real' problem instances.

A Numerical Study on the Open Channel Flow with Plane Wall Jet Inlet Boundary Condition (평면벽면분류의 유입경계조건을 가지는 개수로 유동에 관한 수치적 연구)

  • 설광원;이상룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.287-298
    • /
    • 1989
  • A numerical work was performed to study the flow behaviors of the open channel type flow with its geometric boundary conditions being similar to that of the Multi-Stage-Flash evaporator with and without a baffle. For the analysis, two-dimensional steady turbulent flow was assumed and the widely known k-.epsilon. turbulence model was usded. SIMPLE algorithm and the power difference scheme were used for the numerical approach. Numerical results generally agree with the previous experimental results though there are some uncertainties at far downstream and near the free surface due to the three dimensionality of the flow and surface waves. Without a baffle, the flow has basically the shape of the submerged plane wall jet with its upper boundary at downstream being sharply curved toward the free surface. For the flow with a baffle, recirculation flow patterns are observed at the upper inlet portion and at the backside of the baffle. For the case without a baffle, it was also confirmed that the ratio between the liquid level and the gate opening height is the most important parameter to determine the flow behavior.

Study on Net Assessment of Trustworthy Evidence in Teleoperation System for Interplanetary Transportation

  • Wen, Jinjie;Zhao, Zhengxu;Zhong, Qian
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1472-1488
    • /
    • 2019
  • Critical elements in the China's Lunar Exploration reside in that the lunar rover travels over the surrounding undetermined environment and it conducts scientific exploration under the ground control via teleoperation system. Such an interplanetary transportation mission teleoperation system belongs to the ground application system in deep space mission, which performs terrain reconstruction, visual positioning, path planning, and rover motion control by receiving telemetry data. It plays a vital role in the whole lunar exploration operation and its so-called trustworthy evidence must be assessed before and during its implementation. Taking ISO standards and China's national military standards as trustworthy evidence source, the net assessment model and net assessment method of teleoperation system are established in this paper. The multi-dimensional net assessment model covering the life cycle of software is defined by extracting the trustworthy evidences from trustworthy evidence source. The qualitative decisions are converted to quantitative weights through the net assessment method (NAM) combined with fuzzy analytic hierarchy process (FAHP) and entropy weight method (EWM) to determine the weight of the evidence elements in the net assessment model. The paper employs the teleoperation system for interplanetary transportation as a case study. The experimental result drawn shows the validity and rationality of net assessment model and method. In the final part of this paper, the untrustworthy elements of the teleoperation system are discovered and an improvement scheme is established upon the "net result". The work completed in this paper has been applied in the development of the teleoperation system of China's Chang'e-3 (CE-3) "Jade Rabbit-1" and Chang'e-4 (CE-4) "Jade Rabbit-2" rover successfully. Besides, it will be implemented in China's Chang'e-5 (CE-5) mission in 2019. What's more, it will be promoted in the Mars exploration mission in 2020. Therefore it is valuable to the development process improvement of aerospace information system.