• Title/Summary/Keyword: multi-dimensional process

Search Result 465, Processing Time 0.025 seconds

A method for underwater image analysis using bi-dimensional empirical mode decomposition technique

  • Liu, Bo;Lin, Yan
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • Recent developments in underwater image recognition methods have received large attention by the ocean engineering researchers. In this paper, an improved bi-dimensional empirical mode decomposition (BEMD) approach is employed to decompose the given underwater image into intrinsic mode functions (IMFs) and residual. We developed a joint algorithm based on BEMD and Canny operator to extract multi-pixel edge features at multiple scales in IMFs sub-images. So the multiple pixel edge extraction is an advantage of our approach; the other contribution of this method is the realization of the bi-dimensional sifting process, which is realized utilizing regional-based operators to detect local extreme points and constructing radial basis function for curve surface interpolation. The performance of the multi-pixel edge extraction algorithm for processing underwater image is demonstrated in the contrast experiment with both the proposed method and the phase congruency edge detection.

LIMIT BEHAVIORS FOR THE INCREMENTS OF A d-DIMENSIONAL MULTI-PARAMETER GAUSSIAN PROCESS

  • CHOI YONG-KAB;LIN ZRENGYAN;SUNG HWA-SANG;HWANG KYO-SHIN;MOON HEE-JIN
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.6
    • /
    • pp.1265-1278
    • /
    • 2005
  • In this paper, we establish limit theorems containing both the moduli of continuity and the large incremental results for finite dimensional Gaussian processes with N parameters, via estimating upper bounds of large deviation probabilities on suprema of the Gaussian processes.

Multi-Dimensional Dynamic Programming Algorithm for Input Lot Formation in a Semiconductor Wafer Fabrication Facility (반도체 팹에서의 투입 로트 구성을 위한 다차원 동적계획 알고리듬)

  • Bang, June-Young;Lim, Seung-Kil;Kim, Jae-Gon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.73-80
    • /
    • 2016
  • This study focuses on the formation of input release lots in a semiconductor wafer fabrication facility. After the order-lot pegging process assigns lots in the fab to orders and calculates the required quantity of wafers for each product type to meet customers' orders, the decisions on the formation of input release lots should be made to minimize the production costs of the release lots. Since the number of lots being processed in the wafer fab directly is related to the productivity of the wafer fab, the input lot formation is crucial process to reduce the production costs as well as to improve the efficiency of the wafer fab. Here, the input lot formation occurs before every shift begins in the semiconductor wafer fab. When input quantities (of wafers) for product types are given from results of the order-lot pegging process, lots to be released into the wafer fab should be formed satisfying the lot size requirements. Here, the production cost of a homogeneous lot of the same type of product is less than that of a heterogeneous lot that will be split into the number of lots according to their product types after passing the branch point during the wafer fabrication process. Also, more production cost occurs if a lot becomes more heterogeneous. We developed a multi-dimensional dynamic programming algorithm for the input lot formation problem and showed how to apply the algorithm to solve the problem optimally with an example problem instance. It is necessary to reduce the number of states at each stage in the DP algorithm for practical use. Also, we can apply the proposed DP algorithm together with lot release rules such as CONWIP and UNIFORM.

AN ACCURATE AND EFFICIENT CALCULATION OF HIGH ENTHALPY FLOWS USING A HIGH ORDER NEW LIMITING PROCESS

  • Noh, Sung-Jun;Lee, Kyung-Rock;Park, Jung-Ho;Kim, Kyu-Hong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.1
    • /
    • pp.67-82
    • /
    • 2011
  • Calculation of accurate wall heat flux for high enthalpy flows requires a dense grid system, which leads to significantly large computational time. A high-order scheme can improve the efficiency of calculation because wall heat flux can be obtained accurately even with a relatively coarse grid system. However, conventional high order schemes have some drawbacks such as oscillations near a discontinuity and instability in multi-dimensional problem. To resolve these problems, enhanced Multi-dimensional Limiting Process(e-MLP) was applied as a high-order scheme. It could provide robust and accurate solutions with high order accuracy in calculation of high enthalpy flows within a short time. We could confirm the efficiency of the high order e-MLP scheme through grid convergence tests with different grid densities in a hypersonic blunt nose problem.

The Analysis of H-Shape Rolling by the Finite Element Method (유한요소법에 의한 H형강 압연공정의 해석)

  • 신현우;김낙수;박종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1095-1105
    • /
    • 1993
  • Shape rolling processes to produce H-section beams are numerically simulated by the simplified three-dimensional finite element method. The 2-dimensional finite element method, used for the generalized plane strain condition, is combined with the slab method. Computer simulation results of the 19-passes in H-section beam rolling in practice include the grid distortions, the cross-sectional area changes, the roll separating forces, and the roll torques. Also, the amount of side spread can be found during the multi-pass rolling simulations. The finite element mesh system is remeshed with I-DEAS whenever the billet distorts severely. This study would contribute to CAD/CAM of shape rolling process through the optimal roll pass schedule.

A Study on Process Data Compression Method by Clustering Method (클러스터링 기법을 이용한 공정 데이터의 압축 저장 기법에 관한 연구)

  • Kim Yoonsik;Mo Kyung Joo;Yoon En Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.4 s.12
    • /
    • pp.58-64
    • /
    • 2000
  • Data compression and retrieval method are investigated for the effective utilization of measured process data. In this paper, a new data compression method, Clustering Compression(CC), which is based on the k-means clustering algorithm and piecewise linear approximation method is suggested. Case studies on industrial data set showed the superior performance of clustering based techniques compared to other conventional methods and showed that CC could handle the compression of multi-dimensional data.

  • PDF

Multi-Dimensional Management Model on the Basis of Process to Evaluate Information Systems (정보시스템 평가를 위한 과정 기반 다차원 관리 모형 설계)

  • Lee, Sangwon;Kim, Sunghyun;Park, Sungbum;Ahn, Hyunsup
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.91-92
    • /
    • 2014
  • Public organizations and enterprises have repeated to invest in development or operation of their information systems. However, these investment projects have been not taken care of in the field of administration and evaluation. Since these information systems projects have unique characteristics such as technology sensitiveness, network effectiveness, embeddedness, and externality, it is not easy to manage and monitor them. Returns of investment for information systems should nonetheless need efficient monitoring and effective analysis for them. In this research, we propose a multi-dimensional management model on the basis of process in order to evaluate information systems.

  • PDF

Modal transformation tools in structural dynamics and wind engineering

  • Solari, Giovanni;Carassale, Luigi
    • Wind and Structures
    • /
    • v.3 no.4
    • /
    • pp.221-241
    • /
    • 2000
  • Structural dynamics usually applies modal transformation rules aimed at de-coupling and/or minimizing the equations of motion. Proper orthogonal decomposition provides mathematical and conceptual tools to define suitable transformed spaces where a multi-variate and/or multi-dimensional random process is represented as a linear combination of one-variate and one-dimensional uncorrelated processes. Double modal transformation is the joint application of modal analysis and proper orthogonal decomposition applied to the loading process. By adopting this method the structural response is expressed as a double series expansion in which structural and loading mode contributions are superimposed. The simultaneous use of the structural modal truncation, the loading modal truncation and the cross-modal orthogonality property leads to efficient solutions that take into account only a few structural and loading modes. In addition the physical mechanisms of the dynamic response are clarified and interpreted.

Multi-station Fixture Layout Design Using Simulated Annealing

  • Kim, Pansoo;Seun, Ji Ung
    • Management Science and Financial Engineering
    • /
    • v.10 no.2
    • /
    • pp.73-87
    • /
    • 2004
  • Automotive and aircraft assembly process rely on fixtures to support and coordinate parts and subassemblies. Fixture layout in multi-station panel assemblies has a direct dimensional effect on final products and thus presents a quality problem. This paper describes a methodology for fixture layout design in multi -station assembly processes. An optimal fixture layout improves the robustness of a fixture system against environmental noises, reduces product variability, and eventually leads to manufacturing cost reduction. One of the difficulties raised by multi-station fixture layout design is the overwhelmingly large number of design alternatives. This makes it difficult to find a global optimality and, if an inefficient algorithm is used, may require prohibitive computing time. In this paper, simulated annealing is adopted and appropriate parameters are selected to find good fixture layouts. A four-station assembly process for a sport utility vehicle (SUV) side frame is used throughout the paper to illustrate the efficiency and effectiveness of this methodology.

Investigation the tilling imbalance and dimensional variations of multi-cavity injection molded parts (다수 캐비티의 사출성형품에서 충전의 불균형과 치수편차의 고찰)

  • Kang, M.A.;Kim, Y.K.;Kim, J.M.;Lyu, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.266-270
    • /
    • 2007
  • Small injection molded articles such as lens and mobile product's parts are usually molded in multi-cavity mold. The problems occurred in multi-cavity molding are flow imbalance among the cavities. The flow imbalance affects on the dimensions and physical properties of molded articles. First of all, the origin of flow imbalance is geometrical imbalance of delivery system. However, even the geometry of delivery system is balanced well the cavity imbalance is being developed. This comes from the unsuitable operational conditions of injection molding. Among the operational conditions, injection speed is the most significant process variable affecting the filling imbalances in multi-cavity injection molding. In this study, experimental study of flow imbalance has been conducted for various injection speeds and materials. Also, the filling Imbalances were compared with CAE results. The dimensions and physical state of multi-cavity molded parts were examined. The results showed that the filling imbalances vary according to the injection speed and flow property of resins. Subsequently, the imbalanced filling and pressure distribution in the multi-cavity affect on the dimensions and physical states of molded parts.

  • PDF