J. Korean Math. Soc. 42 (2005), No. 6, pp. 1265-1278

LIMIT BEHAVIORS FOR THE
INCREMENTS OF A d-DIMENSIONAL
MULTI-PARAMETER GAUSSIAN PROCESS -

YoNGg-KAB CHOI, ZHENGYAN LIN, HWA-SANG SUNG,
Kyo-SHIN HWANG, AND HEE-JIN MOON

ABSTRACT. In this paper, we establish limit theorems containing
both the moduli of continuity and the large incremental results for
finite dimensional Gaussian processes with N parameters, via esti-
mating upper bounds of large deviation probabilities on suprema
of the Gaussian processes.

1. Introduction and results

The limit theory on the increments of Wiener processes, partial sum
processes, empirical processes and etc. is integrated in Csorg6 and Révész
[9] and Lin and Lu[19)].

Since then, many various limit theories for fractional Brownian mo-
tions, renewal processes, Gaussian processes and related stochastic pro-
cesses have been developed in [1, 2, 3, 4, 5, 10, 11, 14, 17, 18, 24, 25, 27,
28] and etc.

In this paper, we establish limit theorems containing both the mod-
uli of continuity and the large incremental results for finite dimen-
sional Gaussian processes with N parameters under mild conditions.
Throughout the paper, we always assume the following conditions: Let
{X;(t), t € [0,00)N}, 5 = 1,2,--- ,d, be real-valued continuous and
centered Gaussian processes with X;(0) = 0 and E{X;(t) — X;(s)}* =
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o2(|lt—sl)), where o;(h) are positive and nondecreasing continuous func-
tions of A > 0 and || - || is the usual Euclidean norm. Put o(d,h) =
maxj<;<q0;(h) and we assume that, for some o > 0, o(d, h)/h* is
quasi-increasing, that is, there is a constant ¢ > 0 such that o(d, s)/s* <
co(d,t)/t* for 0 < s < t < oo.

Let {X(t) = (Xyi(t),---,Xq(t)),t € [0,00)"¥} be a d-dimensional
Gaussian process with norm || - || and N parameters t;,--- ,tx € [0, 00),
where t = (¢1,--- ,tn). Denote:

0=(0,---,0) and 1=(1,---,1) in [0,00)",

t<s if t; <s; for all integers 1 <i < N,

tts=(t1 51, - ,tntsy), ts=(t151, - ,tNSN),
at = (at1,--- ,aty) for a € (—o0, ),

a(T) = (a(T), -+ ,an(T)), b(T)= (br(T), - ,bn(T)),

5u(T) = {2(log(I(D)]/fa() )" + log | log o (d, Ja()N) }
5a(T) = {2 o8 (Ib(T) | /a@]) }
where a;(T) and b,(T), 4 =1,2,--- , N are positive continuous functions

of T > 0, and log x = In(max{z, 1}).
The following results generalize some main theorems for one dimen-
sional Gaussian processes with one parameter in [1, 5, 8, 9, 21, 27, 28].
The main results are as follows:

THEOREM 1.1. Assume that

i Mm a — 00 as — 00

Then we have

. | X4t +s) — X(t)]|
1.1) limsup sup sup <1 as.
- T—oo |tI<Ib Ishi<tam  o(d, la(T)|]) 51(T)

The condition (i) implies that a(T’} and b(T) may be many diverse
functions. However, in order to obtain the opposite inequality of (1.1),
the conditions on a(T'), b(T') and o(d, -) are a little bit restricted as in
the following Theorem 1.2.

A positive function o(h), h > 0, is said to be regularly varying with
exponent a > 0 at b > 0 if limy,_,,{o(zh)/o(h)} = z%, = > 0.
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THEOREM 1.2. Assume that o(d,h) is a regularly varying function
with exponent o (0 < a < 1) at 0 or oo and that there exist positive
constants c¢iand ¢y such that

o2 a?
(i) do®(d, h) (d, h)

d?*c?(d, h)
< el

i < N and

Suppose that

o%(d, h)
dh? '

h2

‘§C2

1 b(T T
Gy EOROVI@D
T—oo log|log|/b(T)]||
Then we have

- 19t 4 a(T)) — X9(1)]
L2) it s @ laDmD T

The class of variance functions ¢? satisfying the condition (ii) con-
tains all concave functions with 0 < o < 1/2 (e.g. 62(d,h) = Vh) and
convex functions with 1/2 < o < 1. We recall that the correlation func-
tion on increments of a stochastic process with stationary increments is
nonpositive if and only if its variance function is nearly concave (cf. see
(2.8) of this paper, (3.10) and (4.2) in Csédki et al.[5] and (2.7) in Lin
and Qin[20]), and vice versa.

The condition (iii) guarantees that the class of vector functions a(T’)
and b(T') satisfying (iii) contains many various functions such that they
can go to zero, constants or infinity as T tends to infinity.

By combining Theorems 1.1 and 1.2, we obtain the following limit
theorem containing both the modulus of continuity and the large incre-
mental result:

COROLLARY 1.1. Under the assumptions of Theorem 1.2, we have

m sup sup | X4t +s) — X4t)]
T ¢ <Ib(r)|| Isl<lla(m) o (d, la(T)]]) B2(T)
: | Xt 4 a(T)) — X4(t)|]
=1
T ||t||§sﬁ1tr»)(T>u a(d, la(T)|) B2(T)
=1 a.s.

The structures of main theorems above and the techniques for their
proofs which have been studied from one-dimensional Gaussian processes
with one-parameter can be applied to develop the limit theories on in-
crements of finite dimensional multi-parameter random fields with re-
spect to the following stochastic processes: Ornstein-Uhlenbeck process
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(e.g. Cséki et al.[5]), renewal process (Steinebach|[25]), lag sum process
(Choi and Hwang][3]), local-time process (Csorgé et al.[6]), partial sum
process (Szyszkowicz[26], Steinebach[24], Deheuvels and Steinebach[13],
Csorgé et al.[7]), self-normalized partial sum process (Csorgé et al.[12],
Shao[22]) and etc.

EXAMPLE 1.1. (large incremental result) Let {X;(t), t € [0.00)V},
j=12---,d, be N-parameter fractional Brownian motions of orders
aj with 0 < o < 1, that is, let {X;(t), t € [0.00)V}, j =1,2,--- ,d, be
Gaussian random fields with X;(0) = 0 and o;(h) = A%, h > 0. When
o; = 1/2, then {X;(t), t € [0.00)" } are standard Wiener random fields.
For convenience, put

b(T) = (e7,v2e7,--- ,V/NeT) and a(T) =Te Th(T).
Then o;(h), a(T) and b(T) satisfy all conditions of Corollary 1.1 with

Ib(T)|| = VNN +1)/2 €T =: by €T,
B2(T) ~ V2NT and o(d,|a(T)|) = (bnT)*

for sufficiently large T', where @ = maxi<j<q0;. Thus we have, by
Corollary 1.1,

[X(t +5) = X4
T(2a+1)/2

lim  sup sup
T—0 ||t <byeT ||s||<bnT

— IX(t +a(T)) — X(t)]
T T e Tetny/z

=V2N(bn)*  as.

EXAMPLE 1.2. (modulus of continuity) Let {X;(t), t € [0.00)"V},
7=12,-.- ,d, be as in Example 1.1. Put

b(T)= (e, T ®logT, T™Y) and a(T)=T"'b(T).
Then we get

|b(T)|| < 3T '(logT) and B2(T) =+/2NlogT
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for sufficiently large T. Thus, by Corollary 1.1, we have

lim  sup sup | X4t +s) — X4
T—o0 g <)l sl<llaTy o(d,[la(T)])v1ogT
| Xt +a(T)) — X4(t)]

= lim sup
T—oogi<bry ol |a(T)|)vieg T
=+2N a.s.
2. Proofs

Theorem 1.1 is proved by using the following lemma (cf. Lin and
Choi[18]):

LEMMA 2.1. For any € > 0, there exists a positive constant C. de-
pending only on € such that

< < [ X4t +s) — XUt)
P{ ||t||shlt?(:r)|| ||s||slnlf(T>|| a(d,lla(T)|) = m}

@™
SCE(|||ag>|’D va(yroe) v

where ®4(z) = P{||N%0,1)|| > =} and N%(0,1) is a d-dimensional
standardized normal random vector.

It is well-known that
Q4(x) < cxt e "2 p>1
for some ¢ > 0 (cf. Lemma 1 in Ké6no[14]).
Proof of Theorem 1.1. Let # =1+ ¢ for any given € > 0. Define

Ap = {T:6F < o(d, |Ja(D)|)) < 651}, —oo <k < o0,

_ Cai o DI _ 541 .
Ak,j_{T.e§Ha<T>H§6+,TeAk}, 0<j< oo,

lar, ;|| = sup{|la(T)|| : T € A},
br, ;|| = sup{b(T)|| : T € Ak ;}.
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By the condition (i), we have
(2.1)

limsup  sup . | Xt +s) — Xt)|]
T—oo [tI<IbD) [si<lacm)) o(d; [|a(T)]]) B2(T)

< limsup sup sup  sup up 1X(t +5) — X(t)]
T JklHooo 52020 TeA; tI<ib)] fsi<llacm)) o(d, la(T)]]) Bu(T)

. X4t +s) — X%t
< limsupsup  sup sup I X : ) - ()”,
[kl+1—00 321 It <Iibz, , I IslI<llaz, | | 0% G(k, j)

where G(k, j) = {2(log ™7 + loglog 0|k|)}1/2'
We will show that

Xt +5s) — Xt

limsup sup  sup sup

|k|+i—0c0 j21 [t<IIbr, ;|| s <llaz, ;I ok G(k, §)
22 Xd t _ Xd t
(22) < @ limsup sup  sup sup [ X%(t +s) ( )H
Ikl+i—c0 521 ¢l <|br, Il Isl<lla, ;I 7(d: [z, [) G(k, )
< 6? as.

By Lemma 2.1, there exists C. > 0 such that

d _ Xd t
P{ sup  sup sup 1X°(t + 5) ( )” > 0}
321 [t <lbr, 1 Isl<llaz, I (d llaz, ; )Gk, 5)

bz, -||>N 2(1+¢) Nj k
<C ( e exp| — log 67 + log log gl¥l
(2.3) 5; laz, , | ( 77z ))
<CY N gy
Jj=l

<C. |k v 1|—1——s' e—s'Nl

for sufficiently large |k| 4 I, where ¢’ =¢/(2+¢) and k V1 = max{k, 1}.
Hence we have
i i P{ X4t +5) — X4(t)|

sup  sup sup — > 0} < 00
321 jtl<Ibz, s <lla, ;1| (&, l|laz, ; NGk, 5) ,

1=0 |k|=1

and the inequality (2.2) follows from the Borel-Cantelli lemma. Combin-
ing (2.2) with (2.1) yields (1.1) by the arbitrariness of §. This completes
the proof. O
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The following Lemmas 2.2-2.5 are needed to prove Theorem 1.2 :

LEMMA 2.2. Assume that the condition (ii) of Theorem 1.2 is satis-
fied. Let a > 0 and b > 1 be N-dimensional vectors. Then there exists
a positive constant ¢ such that

lla [/b-+1 lal /b 2 bt
\/‘ o) [ ] < LD
llal] bl llall [Ib—1] b — 1]

Proof. We have

lall llb+1j] llall o]
’/ do?(d, ) —/ do(d, x)
|

lall bl flall lb~1]f
I/Iall Ib+1ll+llall Ib—1[—(lall |l (daz(dﬁ + |lall ]l — |lall b - 1)
lall Ib—1]] dx
2 lall [lb4-1]|+{lall [lb—1]—||a] {ib|
_do (d,x))d$+/ (do (d, x)) g
dz lall b dx
flall fo+1+Hall ib—1l—llall ibll  pz+lall iblj—jall ib—1} 2 2
llall Ib—1]] z
el o2+l o1l 151 | g2 (g, )
+/ ‘———’ ’dsc
llall b dx
=: 1 + 1, say
Thus,
I
lla]l Ib+1l+llall ib—1]~llall Ib]]  pz+Hal Ib]|—(lall b-1] 2 d,
< / / (cQg(—y—))dydx
lla]l [Ib—1]| z y?

llall ib+1([+{lall [[b—1|(—]|all ||b]| 2 B b_1
s@/' @w¢x+wmmglmm n»
lla]| {b—1]| T

x (lall 1] = llall b — 1]|) dz
@ llallb+1)) m . i
< ey g Ul P+ 2 = fal i) (lal bl — flall b - 11)

_9(d ]l b+ 1])
ST
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where ¢ > 0 is a constant, and

llafl Ib+1(1+l|all Ib—1[|~{all ||bi| 2
I, S/ (01 o’(d, m))d:c
ftall Ib]| z

o?(d, |lal ['b + 1))

lai [Ib]
x (lall b+ 1] = Jja]l I'b]] ~ (la]l bl - llall b - 1]))
a?(d, |lal I[b + 1])

<a

= (1

[lall [
. (1al* b+ 1|1” — Jla|j? [|b]}* — (lal|* [[b]|* — lla]* b — 1||2))
2[jall [Ib]
2

<o Zlalb+ 1) -
b—1]

LEMMA 2.3. (Slepian[23]) Suppose that {V;, i =1,--- ,n} and {W;,

i=1,---, n} are jointly standardized normal random variables with

Cov(V;,V;) < Cov(W;, Wj), ¢ # j. Then, for any real u; (i =1,--- ,n),
we have

P{V;<u;, i=1,--- ,n} < P{W; <y, i=1,---,n}.

LEMMA 2.4. (Leadbetter et al.[15], Li and Shao[16]) Let N = (n1, - - -,
ny) be a N-dimensional vector, where ny,--- ,ny = 1,2,--- ,L. Sup-
pose that {Y (N)} is a sequence of N-parameter standard normal random
variables with A(N,N’) := Cov (Y(N), Y(N')) such that

¢ := max |A(N,N)| < 1.
N#N/
Let {iy = (ln,, -+ ,lnn)} be a subsequence of {N}. Denote m =

(my,--- ,mpy) with m; < L,1 <4 < N. Then, for any real number
u, we have

Py max Y(ly) < u}

1<N<m
< {Q(u)}(nmlmi)

AN, N w
T ehnmien (- )

NN
1<N.N'<m

(2.4)
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for some ¢ > 0, where A\(N,N') = A(ly, ') and ®(v) = [*_ \/5;6 —v*/2 gy

Estimating an upper bound for the second term of the right hand side
of (2.4), we obtain the following lemma, whose proof is similar to that
of Lemma 7 in Choi and Ko6no[4].

LEMMA 2.5. Let Y(N), § and A(N,N’) be as in Lemma 2.4. Further,
assume that the inequality

AN, N < [N - N|7

holds for some v > 0. Set u = {(2 — n)log (IL lmz)}l/Q, where 0 <
n<(1-46w/(1+v+4§). Then we have

Yo=Y |)\(N,N')|exp(—f+—|>\%%’—l\],—)l)Sc(il]jlmi)_éoa

NN’
1<N,N'<m

where 0o = {v(1 -0) —n(1+ 5+ v)}/{(1+v)(1+6)} >0 andcis a

positive constant independent of N and u.

Proof of Theorem 1.2. Let 1 < # < e. For integers ji,---,jn and
k, denote j = (jl;"‘ ,jN>7 j= 'Ilvzi\;ljw e — (904.717... ,gajN) for
-0 < a< oo and

Bis ={T:0 1 <|b(T)|| <%, 671 <ai(T)< 6% 1<i< N}
Note that ||a(T)|| > 69~! for T € By ;. First, assume that ||b(T)|| — 0
(or 0o) as T — oo. By the condition (iii), there exists v > 0 such that

p:=k—j>~(loglogd*)/(log0)? =: K

for sufficiently large |k|. Put m; = [#*=5~1/(v/NM)], 1 <i < N, where
M > 0 is large enough and [] denotes the integer part. We can write
(2.5)

. IX(t +a(T)) — Xt)||
liminf  sup

T—oo ei<ibry) o, [a(T)]) B2(T)

d iy d
> liminf inf  sup IX°(t + &) 1‘\)]( ()1 o

[kl—co P>K g <ok-1 5 (d, || @3]]){21og (T, mi)}

. [ X4t +69) — XUt +5)|
— hmsup sup sup su

[kl —co P>K |1t]|<6* ©1-1<s<6i g(d, ||©I-1]){21log([],Z 1mz)}

=: Q1 — Q2.

1/2
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We claim that

(2.6) Q1>1 as.

By the definition of o(d, h), there exists an integer ip (1 < ip < d) such

that 04, (]|63]]) = o(d, ||®7])), where iy = 40(j) is a function of j. Put
m = (my, -+ ,my). Then

@1 2 liminf inf  sup Xi.o (t+6) _Ji(iO(t) 1/2
el—o0 p>K ¢ <pr—1 gy, (/|03]]) {21og([T;=, ma) }
> liminf inf max Xip (M1 +1)6) —Ij(i (Ml?J/z)
Iki—oo p>K1slsm 5. (|03 {210g(TTHY, m:i)}

=1

(2.7)

Le
t Xio (ML + 1)) — X;, (M1&)

a4 (169])) ’

Using the elementary relation ab = (a? 4+ b? — (a — b)?) /2, then it follows
that, for all I and I’ with I > U,
(2.8)
N(0,V) == Cov(24(1), Z;(1'))
1

R TR
= Zoz (i b IM U~ V)& + &1l) = o, (1@~ 1)e )

— (o3 (1M - 1)&)) - o2, (M@ — V)6 — &) }.

Zj(l)= 1<I<m.

If the right hand side of (2.8) is less than or equal to zero, then it follows
from Lemma 2.3 that, for any 0 < e < 1,

P{ inf max 410, < \/E}

p>K 1<I<m /2 log(H;Nzlmi)

<y {@(\/(2 — 2) 1og(ng\;1m,-)) }HL "

p>K

On the other hand, if the right hand side of (2.8) is positive, that is, 02,
is a nearly convex function, then it follows from the regular variation of
o2 and Lemma 2.2 with a = &3 and b = M(l — I) that
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N (z )|

l/nc—vn IMA-v)+1) 2 o et M-y ”
o ||9 o2, (1691 | Jyes yrea—ry ° I IM-ty-1)

on (1€ M — V) + 1))
zo(lleJll)HM(l—l’) 12

”M(l—l’)+12 N
——c“M(l—l/)_luz ||M(l—l’)+1“2 2
<&-v|

for sufficiently small £ > 0, where v = 1 — a > 0. Let us apply Lemmas
2.4 and 2.5 for

Y() = Z(1), 1<l<m,
AL = INE ) < gl -7,
={(2 - n) log(II}L i) Y2 = 2.

Then we have

P{ inf max 210 < \/1—8}

p>K 1<l<m 92 log( N 1mz>

< 3 (o)™ o(Tm) ")
(2.10) e e
< Z {exp(_cesz) +c(9Np)“ 0}
>K
<e Z 9—Noor < g=No(logylog6*!)/log 6
p>K

<c |k|—N507/log9

for sufficiently large {k|. Note that the right hand side of (2.9) is less
than or equal to that of (2.10). Taking 6 > 1 such that logf < Ndéyv,
then the Borel-Cantelli lemma implies (2.6) via (2.7).

Now we turn to show that

(2.11) Q2 < 2ce™?  as.
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for any small ¢ > 0, where ¢ > 0 is a constant. Since o(d, h) is regularly
varying, we have

o(d, |6 — &)

a/2
ol [e1) =
Therefore, (2.11) is proved if we show that
(2.12)
: X9t + &) — X9t +s)||
limsup sup sup sup
[kl—oc0 p>K ||t]|<6% ©3-1<s<®i5({, ||©F — ©I1||)4/2 log(Hi]\ilmi)

<2 as.

Applying the same way as the proof of Lemma 2.1, then it follows that,
for sufficiently large |k|,

s |Xe+6) XUt o,

P{ sup }
Itl<6* @-1<s<89 o(d, |©3 — ©I-1[|)4/2 log (TN m;)
gk 42 +¢)? N
<¢—/——— - o P
< C e eT[ P ( PRl )
< c3Np,

Since
oC oo
S Y e 30 <o
lk|=1p>K k=1

we obtain (2.12) and hence (1.2) holds true by (2.11), (2.6), and (2.5).
Next, assume that the vector function b(T’) is constant such that
b(T) = 6°(i = 1,--- ,N) for a constant ¢ (—oo < ¢ < o). Put m; =
077 /M],1<i{< N,in B j. By (iii), we can write
L |X(t +a(T)) — X4(t)
liminf  sup
T=oo <oy o(d, (D)) B2(T)
d i\ _ yd
it s XS X
7% < vNes a(d, [1©9]) {2log(TT:L, mi) }
. | X4t + ©9) — X4t +5)|
—limsup sup - ~ 172
J==o0 el <vNee O3 <s<e o(d, |03 ){21og([T;= mi) }
= Q’I - Q/2a say.
According to the same lines as in (2.6)-(2.12), we can easily prove that
(1.2) holds true as well. O
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