• 제목/요약/키워드: multi-dimensional flow

검색결과 341건 처리시간 0.027초

Queueing System Operating in Random Environment as a Model of a Cell Operation

  • Kim, Chesoong;Dudin, Alexander;Dudina, Olga;Kim, Jiseung
    • Industrial Engineering and Management Systems
    • /
    • 제15권2호
    • /
    • pp.131-142
    • /
    • 2016
  • We consider a multi-server queueing system without buffer and with two types of customers as a model of operation of a mobile network cell. Customers arrive at the system in the marked Markovian arrival flow. The service times of customers are exponentially distributed with parameters depending on the type of customer. A part of the available servers is reserved exclusively for service of first type customers. Customers who do not receive service upon arrival, can make repeated attempts. The system operation is influenced by random factors, leading to a change of the system parameters, including the total number of servers and the number of reserved servers. The behavior of the system is described by the multi-dimensional Markov chain. The generator of this Markov chain is constructed and the ergodicity condition is derived. Formulas for computation of the main performance measures of the system based on the stationary distribution of the Markov chain are derived. Numerical examples are presented.

다방향 불규칙파가 투과성 잠제 주변의 3차원 파동장에 미치는 영향 (Effect of Multi-directional Random Waves on Characteristics of 3-D Wave Field around Permeable Submerged Breakwaters)

  • 허동수;이우동
    • 한국해양공학회지
    • /
    • 제26권2호
    • /
    • pp.68-78
    • /
    • 2012
  • This study proposes an improved 3-D model that includes a new non-reflected wave generation system for oblique incident and multi-directional random waves, which enables us to estimate the effect of the various wave-types on 3-D wave fields in a coastal area with permeable submerged breakwaters. Then, using the numerical results,the three-dimensional wave field characteristics around permeable submerged breakwaters are examined in cases of oblique incident and multi-directional random waves. Especially, the wave height, mean surface elevation and mean flow around the submerged breakwaters are discussed in relation to the variation of incident wave condition.

정상 중력장에서 낮은 스트레인율을 갖는 대향류 비예혼합화염의 소화한계 (Extinction Limits of Low Strain Rate Counterflow Nonpremixed Flames in Normal Gravity)

  • 오창보;최병일;김정수;;박정
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.997-1005
    • /
    • 2005
  • The extinction characteristics of low strain rate normal gravity (1-g) nonpremixed methane-air flames were studied numerically and experimentally. A time-dependent axisymmetric two-dimensional (2D) model considering buoyancy effects and radiative heat transfer was developed to capture the structure and extinction limits of 1-g flames. One-dimensional (1D) computations were also conducted to provide information on 0-g flames. A 3-step global reaction mechanism was used in both the 1D and 2D computations to predict the measured extinction limit and flame temperature. A specific maximum heat release rate was introduced to quantify the local flame strength and to elucidate the extinction mechanism. Overall fractional contribution by each term in the energy equation to the heat release was evaluated to investigate the multi-dimensional structure and radiative extinction of 1-g flames. Images of flames were taken for comparison with the model calculation undergoing extinction. The two-dimensional numerical model was validated by comparing flame temperature profiles and extinction limits with experiments and ID computation results. The 2D computations yielded insight into the extinction mode and flame structure of 1-g flames. Two combustion regimes depending on the extinction mode were identified. Lateral heat loss effects and multi-dimensional flame structure were also found. At low strain rates of 1-g flame ('Regime A'), the flame is extinguished from the weak outer flame edge, which is attributed to multi-dimensional flame structure and flow field. At high strain rates, ('Regime B'), the flame extinction initiates near the flame centerline due to an increased diluent concentration in reaction zone, which is the same as the extinction mode of 1D flame. These two extinction modes could be clearly explained with the specific maximum heat release rate.

진동하는 2차원 날개 단면 주위에 대한 점성 유동장 계산( Part 2. 동적실속이 발생하는 경우 ) (Computation of Viscous Flows around a Two-dimensional Oscillating Airfoil ( Part 2. with Dynamic Stall ))

  • 이평국;김형태
    • 대한조선학회논문집
    • /
    • 제44권1호
    • /
    • pp.16-25
    • /
    • 2007
  • Studies of unsteady-airfoil flows have been motivated mostly by efforts to avoid. or reduce such undesirable effects as flutter, noise and vibrations, dynamic stall. In this paper, we carry out a computational study of viscous flows around a two-dimensional oscillating airfoil to investigate unsteady effects in these important and challenging flows. A fully implicit incompressible RANS solver has been used for calculating unsteady viscous flows around an airfoil. The cell-centered End order finite volume method is utilized to discretize governing equations. in order to ease the flow computation for fluid region changing in time, improve the qualify of solution and simplify the grid generation for an oscillating airfoil flow, the computational method adopts a moving and deforming grid generation technique based on the multi-block grid topology. The numerical method is applied for calculating viscous flows of an oscillating NACA 0012 in uniform flow. The computational results are compared with available experimental data. Computed results are compared with experimental data and flow characteristics of the experiment are reproduced well In the computed results.

2차원 유동 해석을 위한 OpenFOAM용 격자 생성 프로그램 개발 (DEVELOPMENT OF OPENFOAM GRID GENERATION PROGRAM FOR TWO-DIMENSIONAL FLOW ANALYSIS)

  • 김왕현;김병수
    • 한국전산유체공학회지
    • /
    • 제21권2호
    • /
    • pp.25-31
    • /
    • 2016
  • In this paper, a study on the development of OpenFOAM grid generation program for two-dimensional flow analysis is described. By using the pre-processor(eMEGA) of EDISON_CFD system, grids for OpenFOAM flow calculation were obtained. Resultant two-dimensional grids were used to calculate flow fields by applying simpleFoam, one of the OpenFOAM's popular solvers, and the obtained flow results were compared with theoretical and experimental data available. Also grids generated by present program were compared with grids by a commercial pre-processor Pointwise for the purpose of verification. Verification work includes three cases(single block, O-type single block, and multi block grid), and all results show reasonable matches. According to the current achievement, it can be concluded that OpenFOAM grid can be constructed conveniently by using eMEGA with GUI.

병렬 컴퓨터에서 다중블록 유한체적법을 이용한 비압축성 유동해석 (Numerical Prediction of Incompressible Flows Using a Multi-Block Finite Volume Method on a Parellel Computer)

  • 강동진;손정락
    • 한국유체기계학회 논문집
    • /
    • 제1권1호
    • /
    • pp.72-80
    • /
    • 1998
  • Computational analysis of incompressible flows by numerically solving Navier-Stokes equations using multi-block finite volume method is conducted on a parallel computing system. Numerical algorithms adopted in this study $include^{(1)}$ QUICK upwinding scheme for convective $terms,^{(2)}$ central differencing for other terms $and^{(3)}$ the second-order Euler differencing for time-marching procedure. Structured grids are used on the body-fitted coordinate with multi-block concept which uses overlaid grids on the block-interfacing boundaries. Computational code is parallelized on the MPI environment. Numerical accuracy of the computational method is verified by solving a benchmark test case of the flow inside two-dimensional rectangular cavity. Computation in the axial compressor cascade is conducted by using 4 PE's md, as results, no numerical instabilities are observed and it is expected that the present computational method can be applied to the turbomachinery flow problems without major difficulties.

  • PDF

비압축성 Navier-Stokes 방정식의 수렴 가속을 위한 예조건화 Krylov 부공간법과 다중 격자법의 결합 (Combination of Preconditioned Krylov Subspace Methods and Multi-grid Method for Convergence Acceleration of the incompressible Navier-Stokes Equations)

  • 맹주성;최일곤;임연우
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.106-112
    • /
    • 1999
  • In this article, combination of the FAS-FMG multi-grid method and the Krylov subspace method was presented in solving two dimensional driven-cavity flows. Three algorithms of the Krylov subspace method, CG, CGSTAB(Bi-CG Stabilized) and GMRES method were tested with MILU preconditioner. As a smoother of the pressure correction equation, the MILU-CG is recommended rather than MILU-GMRES(k) or MILU-CGSTAB, since the MILU-GMRES(k) preconditioner has too much computation on the coarse grid compared to the MILU-CG one. As for the momentum equation, relatively cheap smoother like SIP solver may be sufficient.

  • PDF

고정밀 플라스틱 제품 성형을 위한 다수 캐비티 사출금형 및 성형 요소기술에 관한 연구 (A study on multi-cavity injection mold and molding elemental technology for plastic product of high precision tolerance)

  • 손종인;김철기;송병욱
    • Design & Manufacturing
    • /
    • 제17권4호
    • /
    • pp.57-62
    • /
    • 2023
  • As a representative method for mass production, a multi-cavity type mold capable of simultaneously molding products of the same shape can be applied. It has the advantage of improving the productivity from several times to several tens of times, but it may cause disadvantages which is the quality deviation with each cavity. This study, therefore, has tried to increase the cavity filling balance by using a melt flipper and a flow distance control part in the runner part of the mold. Along with this, the design and manufacturing of air vents during injection molding have been verified through experimental methods to achieve a higher level of multi-cavity filling balance and dimensional accuracy.