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ABSTRACT 

We consider a multi-server queueing system without buffer and with two types of customers as a model of operation 
of a mobile network cell. Customers arrive at the system in the marked Markovian arrival flow. The service times of 
customers are exponentially distributed with parameters depending on the type of customer. A part of the available 
servers is reserved exclusively for service of first type customers. Customers who do not receive service upon arrival, 
can make repeated attempts. The system operation is influenced by random factors, leading to a change of the system 
parameters, including the total number of servers and the number of reserved servers. The behavior of the system is 
described by the multi-dimensional Markov chain. The generator of this Markov chain is constructed and the ergodic-
ity condition is derived. Formulas for computation of the main performance measures of the system based on the sta-
tionary distribution of the Markov chain are derived. Numerical examples are presented. 
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1.  INTRODUCTION 

In mobile communication network, the entire cov-
erage area is divided into cells. Indeed cell is a coverage 
area of a base station antenna. Nearby cells overlap, and 
an assembly of cells forms a network. Since users of a 
cellular network can move during communication ses-
sions from one cell to another, the network has to perform 
a handover procedure from one base station to another 
without losing the connection. This procedure is called 
handover. So, in the cell the communication sessions ge-
nerated in this cell and received from other cells (hand-
over customers) should be simultaneously serviced. Dif-
ferent systems use different methods for processing the 
handover call. If the network does not give priority to 

the handover calls over the calls generated in a given 
cell, the probability of the current session interruption 
due to the movement of the subscriber will be equal to 
the probability of failure in the initialization of a new 
session. However, it is obvious that the current sub-
scriber disconnection, for example, interruption of con-
versation, is much more irritant than the outgoing call 
drop. Therefore, to reduce the chance of losing the cur-
rent communication sessions during the handover pro-
cedure, handover requests are given a priority. One of 
the possible ways of providing such a priority is a Guard 
Channel Concept, in which part of the communication 
channel is reserved exclusively for the maintenance of 
communication sessions that can be transferred into the 
cell from the outside. In other words, new sessions are 
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blocked if the number of busy channels exceeds a cer-
tain threshold. The paper (Tran-Gia and Mandjes, 1997) 
considers a special case of this strategy, when only one 
channel is reserved for handover customer. In general, it 
is assumed that M  channels are reserved, and the prob-
lem of finding such a number of channels ,M  for which 
the system would be operating optimally according to a 
predetermined criterion is solved. 

To solve such a type of problems, usually operation 
of a cell is modelled by a queueing system with hetero-
geneous customers and retrials, see, e.g., (Choi et al., 
2008; Do, 2011; Zhou and Zhu, 2013; Kim et al., 2014). 
However, existing in the literature queueing models have 
some shortcomings which reduce their adequacy to real 
world systems. The shortcomings of the work (Choi et 
al., 2008) consists of assumptions that arrivals of hand-
over and new customers are defined as the stationary 
Poisson processes and that the service time distribution 
is the same for different types of customers. In (Do, 
2011), it is also assumed that arrivals of handover and 
new customers are defined as the stationary Poisson 
processes. In the papers (Do, 2011) and (Zhou and Zhu, 
2013), it is assumed that the total intensity of retrials is 
constant, not dependent on the current number of retry-
ing customers. As disadvantages of the model consid-
ered in (Kim et al., 2014) as well as in some other pa-
pers, the following two may be mentioned: (i) it is as-
sumed that the blocked handover customers do not make 
retrials and permanently leave the system; (ii) customers 
are patient, they cannot leave the cell without getting 
service. The model considered in this paper is free of 
these disadvantages. 

It is well known that quality of operation of the wire-
less communication networks may essentially depend on 
the weather conditions, noise in the transmission thread, 
including the natural and technogeneous ones, failures 
and breakdowns of equipment. Traffic intensity can be 
essentially influenced by time of the day or night, mi-
gration of users, breaking news, etc. All these factors 
may be random. Account of the influence of some ran-
dom factors of characteristics of a service system, in-
cluding telecommunication system, is usually performed 
via consideration of so called queues operating in the 
random environment (RE), for recent references see, 
e.g., (Kim et al., 2009; Kim et al., 2010; Wu et al., 2001; 
Cordeiro and Kharoufeh, 2012; Yang et al., 2013). The 
standard assumption in the existing literature about the 
queues operating in the RE is that the change of the state 
of the RE instantaneously causes the change of inten-
sities of arrivals, service, retrials, impatience, etc. Queues 
where the change of the state of the RE possibly causes 
the change of the number of servers are more compli-
cated for research. This is because the possible change, 
especially decrease of the number of available servers, 
due to the change of the state of the RE, creates diffi-
culties in construction of the multi-dimensional Markov 
chain which describes behavior of the queueing system. 
In this paper, we analyse a queueing model of the cell 

operation where the number of available servers and the 
number of reserved servers may depend on some ex-
ternal random factors. This model suits, e.g., for descrip-
tion of situations when the dynamic redistribution of 
frequencies between the cells is possible, e.g., redistri-
bution of available frequencies between the cells located 
in bedroom suburbs and city business districts during a 
day and night time. Similar to our model was recently 
analyzed in (Dudin et al., 2015). That model has another 
potential field of applications (modeling of cognitive 
radio systems). Primary customers have the preemptive 
priority over the cognitive customers. While in our mo-
del handover customers have the non-preemptive pri-
ority over the new customers. From the point of view of 
mathematical compexity of analysis, the model analyzed 
in (Dudin et al., 2015) is more simple because it was 
assumed in (Dudin et al., 2015) that the customers, 
service of which is terminated due to the reduction of 
the number of available servers caused by the change of 
the state of the RE, immediately leave the system. This 
guarantees that the generator of the multi-dimensional 
continuous time Markov chain describing behavior of 
the system has the three-block-diagonal structure. In our 
model, the generator can have more than three non-zero 
diagonals. 

The paper is organized as follows. Mathematical 
model is described in section 2. In section 3, behavior of 
the considered model is described by the multi-dimen-
sional continuous time Markov chain and the generator 
of this Markov chain is written down. Section 4 is ad-
dressed to derivation of condition of the stable operation 
of the system and computation of the stationary distribu-
tion of the Markov chain. Expressions for some key per-
formance measures of the system are presented in sec-
tion 5. Numerical examples are presented in section 6. 

2.  MATHEMATICAL MODEL 

We consider a retrial multi-server queueing model 
without buffer and with two types of customers. The st-
ructure of the system is presented in Figure 1. 

The system operation depends on the state of the RE. 
The RE is defined by the stochastic process , 0,≥tr t  which 
is an irreducible continuous time Markov chain with the 
finite state space {1, 2, , }L R  and the infinitesimal gene-
rator .G  

We assume that the number of servers depends on 
the state of the RE. So, under the fixed state , = 1, ,Lr r  

,R  of the RE, the number of available servers is 
( ).rN  

Without loss of generality, we assume that the states of 
the REare enumerated in ascending order the number of 
servers, i.e. 

(1) (2) ( ).≤ ≤ ≤L RN N N  
Arrival of customers is modelled by the marked 

Markovian arrival process (MMAP) and is described by 
the underlying process { , }, 0,≥t tr tν  where the process 

tν  with a finite state space {0, 1, , }L W  is defined as fol-
lows. Under the fixed state r  of the RE the process tν  
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behaves as an irreducible continuous time Markov chain. 
The sojourn time of the chain , 0,≥t tν  in the state ν  is 
exponentially distributed with the positive finite para-
meter 

( ) , = 0, , , = 1, , .L Lr W r Rνλ ν  When the sojourn time 
in the state ν  expires, with probability 

( )
0 ( , ')rp ν ν  the pro-

cess tν  jumps to the state 'ν  without generation of cus-
tomers, , ' = 0, , , ', = 1, , .≠L LW r Rν ν ν ν  With probability 

( )
1 ( , ')rp ν ν  the process tν  jumps to the state 'ν (probably 

the same) with generation of type-1 customer, and with 
probability 

( )
2 ( , ')rp ν ν  the process tν  jumps to the state 

'ν  with generation of type-2 customer, , ' = 0, , ,L Wν ν  
= 1, , .Lr R  

The behavior of the MMAP  under the fixed state r  
of the RE is completely characterized by the matrices 

( )
0 ,rD ( )

1 ,rD  and 
( )
2

rD  defined by the entries  
 

( ) ( )
0 ,( ) = , = 0, , ,− Lr rD Wν ν νλ ν  
( ) ( ) ( )
0 , ' 0( ) = ( , '), , ' = 0, , , ',≠Lr r rD p Wν ν νλ ν ν ν ν ν ν  
( ) ( ) ( )

, '( ) = ( , '), , ' = 0, , ,Lr r r
l lD p Wν ν νλ ν ν ν ν  

= 1, 2, = 1, , .Ll r R  
 

For more information about the ,MMAP  its para-
meters and features, see (He, 1996). Characteristics of 
the MMAP  influenced by the RE are given in (Dudin 
and Nazarov, 2015). For information about the MMAP  
parameters fitting see, e.g., (Buchholz et al., 2010) and 
references therein. 

We assume that during the epochs of transition of 
the RE the intensities of the process , 0,≥t tν  transitions 
are changed, but the state of this process does not change. 

If during the arrival epoch of type-1 customer (pri-
ority customer, handover customer) there is a free ser-

ver, the customer is admitted to the system and starts 
service. If at the arrival epoch of type-1 customer all 
servers are busy, then under the fixed state of the en-
vironment r  this customer leaves the system with 
probability 

( )
1 ,rq  or with the complimentary probability 

( )
11 , = 1, , ,− Lrq r R  goes into orbit and tries again later. 
We assume that if, under the fixed state , = 1,r r  

, ,L R  of the ,RE  type-2 customer (non-priority custo-
mer, call that is generated within the cell) is admitted to 
the system only if the number of busy servers is less 
than the threshold 

( )rM  where 
( ) ( ) > 0.≥r rN M  If during 

type-2 customer arrival epoch the number of busy ser-
vers is greater than or equal to 

( ) ,rM  this customer goes 
to orbit with probability 

( )
2
rq  and with the complimen-

tary probability leaves the system, = 1, , .Lr R  
Since the states of the RE  are numbered in ascen-

ding order of the number of servers, it is reasonable to 
assume that the numbers of reserved servers also satisfy 
the inequality 

(1) (2) ( ).≤ ≤ ≤L RM M M  
If the change of the state of the RE  leads to a de-

crease of the number of available servers, we assume 
that the first of all the appropriate number of idle servers 
become unavailable. If this is not enough, the suitable 
number of servers providing service to type-2 customers 
is switched-off. If this is again not enough, the suitable 
number of servers providing service to type-1 customers 
is switched-off. 

In the case of switching-off the servers (i.e., inter-
ruption and forced termination of customers service), 
under the fixed state of the environment ,r  each inter-
rupted customer leaves the system with probability 

( ) ,rp  
= 1, , ,Lr R  independently of its type. With the compli-

mentary probability, each interrupted customer goes to 
orbit. 

 
Figure 1. Structure of the system. 
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Customers in orbit are indistinguishable, and under 
the fixed state , = 1, , ,Lr r R  of the ,RE  make repeated 
attempts to get service through exponentially distributed 
with the parameter 

( ) ( ), > 0,r rα α  time independently of 
other customers. If the attempt to get service is perfor-
med when the number of busy servers is greater than or 
equal to 

( ) ,rM  then the customer returns to orbit with 
probability 

( )
3 ,rq  and with the complimentary probability 

leaves the system, i.e., the customers from orbit can be 
nonpersistent. 

Also, the customers from orbit may be impatient. 
We assume that, under the fixed state r  of the RE, a 
customer leaves the orbit after an exponentially distri-
buted with the parameter 

( ) ( ), > 0,r rβ β  time since enter-
ing the orbit. If we assume that the customers from orbit 
are absolutely patient, we put 

( ) = 0, = 1, , .Lr r Rβ  
The service time of type-l, = 1, 2,l  customer under 

the fixed state r  of the RE  has an exponential distribu-
tion with the parameter 

( ) , = 1, , .Lr
l r Rμ  

3.  PROCESS OF THE SYSTEM STATES 

Let  
• ,ti 0,≥ti  be the number of customers in orbit,  
• , = 1, , ,Lt tr r R  be the state of the RE,  

• ( ), = 0, , ,L
rt

t tn n N  be the number of busy servers,  

• ( ), = 0, , min{ , },L
rt

t t tm m n M  be the number of 
type-2 customers on service,  

• , = 0, , ,Lt t Wν ν  be the state of the MMAP  
underlying process during the epoch , 0.≥t t  

 
The process = { , , , , },t t t t t ti r n mξ ν 0,≥t  is an irreducible 
continuous-time Markov chain. 
Let us introduce the following notation: 

• I  is the identity matrix, O  is a zero matrix of an 
appropriate dimension; 

• e  is a column vector consisting of ones, 0  is a 
row zero vector; 

• 1;= +W W  
• ⊕  and ⊗  are the symbols of Kroneker sum and 

product of matrices, see, e.g., (Graham, 1981); 
• ( ) ( ) ( )= ( 1)( 1 /2), = 1, , ;+ + − Lr r r

rK M N M r R  
• 1diag{ , , }L lA A  is a block-diagonal matrix with the 

diagonal blocks 1, , ;L lA A  
• = diag{0, 1, , }, = diag{ , 1, ,0},−L Ln nC n C n n  

( )= 0, , ;L Rn M  
• ( ) ( ) ( )= diag{ , 1, , 1, },− − + −Lr r r

nC n n n M n M  
( ) ( )= , , , = 1, , ;L Lr rn M N r R  

• ( ), , = 0, , 1,+ + −L R
n nE E n M  are the matrices of size 

( 1) ( 2),+ × +n n  that are defined as follows 

0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0

= , = ;

0 0 0 0 1 0 0 1 0

+ +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

L L

L L

M M M O M M M M O M M

L L

n nE E  

• ( ), , = 1, , ,− − L R
n nE E n M  are the matrices of size 

( 1) ,+ ×n n  that are defined as follows  

  

1 0 0 0 0 0 0
0 1 0 1 0 0 0

= , = ;0 1 0 0
0 0 1
0 0 0 0 0 0 1

− −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

L L

L L

M M O M L

L M M M O M

L L

n nE E  

• , = 1, , ,% LrI r R  are the diagonal matrix of size rK  
with diagonal entries 

( ) ( )( 1) /2

{ 0, , 0, 1, , 1};
+

1442443
L L

r rM M

 

• , = 1, , ,−% LrE r R  are the square matrices of size 
( ) 1,+rM  that are defined as follows  

0 0 0 0 0
1 0 0 0 0

= ;0 1 0 0 0

0 0 0 1 0

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

L
% L

M M M O M M

L

rE  

• 
( ) ( )(1 ) ( ) , ,

( , ) =
0, > ;

−⎧ − ≤⎪
⎨
⎪⎩

k r k r n k
nC p p k n

p k n
k n

 

• ( ) (1) ( ) (1)= max{max{ , }, 1}.− −R RN N N M M  
 
Let us enumerate the state of the Markov chain tξ  

in the lexicographic order of the components ( , , ,i r n  
, ).m ν  We call the set of the states of the chain having 

the value ( , )i r  of two first components as macro-state 
( , ).i r  

Let A  be the generator of the Markov chain ,tξ  
0,≥t  that is formed by the blocks , ,i jA  consisting of 

matrices , ,( ) ′i j r rA  that define the intensities of transitions 
of the Markov chain , 0,≥t tξ  from macro-state ( , )i r  to 
macro-state ( , ), , = 1, , .′ ′ Lj r r r R  The diagonal entries 
of the matrix ,i iA  are negative and the modulus of each 
diagonal entry defines the intensity of leaving corres-
ponding state of the Markov chain , 0.≥t tξ  

 
Theorem 1. The generator A  has the following structure: 

 
0,0 0,1 0,2 0,

1,0 1,1 1,2 1, 1, 1

2,1 2,2 2, 2, 1 2, 2

= .+

+ +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

K K

K K

K K

M M M K M M M O

N

N N

N N N

A A A A O O

A A A A A O
A

O A A A A A
 

 
The non-zero blocks , , , 0,≥i jA i j  have the following 
structure: 

 
 , , ,= ( ) , , = 1, , ,′ ′ Li i i i r rA A r r R  
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,0 ( )
0

( ) ,1 ( )
1 1

, , ( ), 1 ( )
( ) 1

( )( ) ,
( )

( ) =
−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

K

K

M M M O M M

K

K

i r
r

r i r
r

i i r r ri N r
r rN

rr i N
r rN

L B O O O
F L B O O

A
O O O L B

O O O F L

( ) ( ) ( )
2 2 0 ,( ) , 0,+ ⊗ + ⊗ + ≥%r r r

r K r r K Wr r
q I D I D G I i  

(0)
, , , ,( ) = ( ) , < ,′ ′ ′ ′⊗i i r r r r r r WA G Q I r r  , , , ,( ) = ( ) , > ,+

′ ′ ′ ′⊗i i r r r r r r WA G Q I r r  
( )
1,1
( ) ( )
2,1 2,2

,
( ) ( ) ( ) ( )

1,1 1,2 1,3 1, 1
( ) ( ) ( ) ( ) ( )

,1 ,2 ,3 , 1 ,

= , 0,+

− − − − −

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟ ≥
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

K

K

M M M O M M

K

K

k

k k

i i k
k k k k

R R R R R
k k k k k

R R R R R R R

Z O O O O
Z Z O O O

A i
Z Z Z Z O
Z Z Z Z Z

 (1) ( )
, 1 , 1 , 1= diag{ , , }, 1,− − − ≥L R

i i i i i iA A A i  

 
where  

 • 

( ) ( ) ( ) ( ) ( )
2 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 ( ) 1 3 ( ) 1,
( ) ( ) ( ) ( ) ( ) ( )
2 ( ) 1 3 ( ) 1

( ) ( ) ( )
1 ( ) 11

[ ( ) ] , < ,
[ ( ) ] , < ,

= 0;
[ ( ) ]

, = ,

+

+

+

+

− + + + ⊗
− + + + ⊗ ≤

≥
− + + + ⊗

+ ⊗

r r r r r
n n n W

r r r r r r r r
r n r WM Mi n

r r r r r rr
r n r WM M

r r r
rM

C C i I I n M
C C i q I I M n N

L i
C C i q I I

q I D n N

μ μ α β
μ μ α β

μ μ α β

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

 

 • 
( ) ( ) ( )
2 1( )

( ) ( ) ( )
( ) 11

, < ,
=

, < ;

+ +

+

⎧ ⊗ + ⊗⎪
⎨ ⊗ ≤⎪⎩

r r r
n nr

r r rn
rM

E D E D n M
B

I D M n N
 

 • 
( ) ( ) ( )
2 1( )

( ) ( ) ( ) ( ) ( )
2 ( ) 1

( ) , ,
=

( ) , < ;

− −

−

⎧ + ⊗ ≤⎪
⎨ + ⊗ ≤⎪⎩

%

r r r
n n n n Wr

r r r r rn
r r n WM

C E C E I n M
F

C E C I M n N
μ μ
μ μ

 

 
• ( )

, , = 1, , , = 1, , 1,′ ′ −L Lk
r rQ r R r r  are the block matri-

ces of size ,′×r rK K  consisting of non-zero blocks  
( ) ( ) ( )
, ,( ) , = 0, , , = 0, , min{ , , },′
′ ′ ′L L Ll r r

r r n nQ n N n n N  

that are defined as: 
 

(0) ( ) ( ) ( )
, , 1 , , 1( ) = , , ( ) = , , > 0;′ ′
′ ′+ +≤ ≤r k r

r r n n n r r n n nQ I n M Q O n M k

 
( ) ( ) ( )
, ,( ) , = 1, , ,′ ′
′ + Lk r r

r r n nQ n M N  are the matrices of 
size 

( ) ( )(min{ , } 1) ( 1),′+ × +r rn M M  that have the follow-
ing form:  

( )(0) ( )1
, , , ,( ) = , ( ) = , > 0;

′ +
′ ′

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

r kM
r r n n r r n n

I
Q Q O k

O
 

 
( ) ( ) ( ) ( ) ( )
, ,( ) , = 1, , , = min{ ,′ ′ ′
′ ′ ′+ −Lk r r r r

r r n nQ n M N n M n M

 
( )}, , 1,′+ −LrM n are the matrices of size 

( )(min{ , }rn M  
( )1) ( 1)′+ × +rM  with all zero entries except the entry 

( )
, , ( ) ( ),

(( ) ) = ( , )′ ′ ′ ′′− +
′−k

r r n n r rn n M M
Q p k n n ; 

( ) ( ) ( )
, ( ),

( ) , = 1, , ,′
′ ′ + Lk r r

r r rn N
Q n N N  are the matrices of 

size 
( ) ( )(min{ , } 1) ( 1)′+ × +r rM n M  with all zero entries ex-

cept the entries 
( ) ( )
, ( ) ,0,

(( ) ) , = 0, , min{ , },′
′ ′ −Lk r

r r r m rn N
Q m M n N   

( ) ( ) ( ) ( )
, ( ) ( ), , ( )

(( ) ) , = 1, , min{ ,′ ′
′ ′ ′− −

− + Lk r r r
r r r rn N m m n N

Q m n N M M  
( )},′+ − rn N  that are equal to 

( )( , )′− rp k n N ; 
( )
, ,( ) ,′ ′
k

r r n nQ ( ) ( )= 1, , ,′ + Lr rn N N ( ) ( )= max{ ,′ ′′ −r rn M N    
( ) ( ) ( ) ( )max{0, ( )}}, , 1,′ ′ ′− − − −Lr r r rM M n N N  are the ma-

trices of size 
( ) ( )(min{ , } 1) ( 1)′+ × +r rM n M  with all zero 

entries except the entry 
( )
, , ( ) ( ),

(( ) ) = ( , ),′ ′ ′ ′′− +
′−k

r r n n r rn n M M
Q p k n n  

 
• , , = 1, , 1, = 1, , ,+

′ ′− +L Lr rQ r R r r R  are the 
matrices of size ,′×r rK K  that have the form 

, ,
0 ( )(diag{ , , } | )′ ′Ω ΩLr r r r

rN
O  

 
where  

1
( )

,

( ) 1 ( ) ( ) ( ) ( )( 1) (min{ , })
( ) ( )

,
,

= ( | ),

= 1, , ;

+

′

′+ + × − −

⎧
⎪ ≤⎪Ω ⎨
⎪
⎪ +⎩ L

n
r

r r
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• (1) ( ) ( )

, 0 ( )= diag{ , , }, = 1, , ;% %L Lr r
r r rN

Z Z Z r R  

• ( )
, = , > 1, = 1, , ;Lk

r rZ O k r R  
• ( ) ( )

, , ,= ( ) , 1, = 1, , , < ;′ ′ ′ ′⊗ ≥ Lk k
r r r r r r WZ G Q I k r R r r
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L
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β

β α
 

 
Proof. of Theorem 1 is implemented by analyzing all 
possible transitions of the Markov chain , 0,≥t tξ  during 
an infinitesimal time interval and writing the intensities 
of these transitions in the block-matrix form. 

4.  ERGODICITY CONDITION AND THE 
STATIONARY PROBABILITIES OF THE 
SYSTEM STATES 

To find the ergodicity condition of the system, we 
need the following assertion. 

 
Lemma 1. The Markov chain , 0,≥t tξ  belongs to the 
class of the asymptotically quasi-Toeplitz continuous-
time Markov chains, see (Klimenok and Dudin, 2006). 
 
Proof. In order to prove that the Markov chain , 0,≥t tξ  

belongs to the class of the asymptotically quasi-Toeplitz 
Markov chains, it is necessary to show the existence of 

matrices , = 0, , 1,+LkY k N  that are defined as  
 

1 1
0 , 1 1 ,= lim , = lim ,− −

−→∞ →∞
+i i i i i i kt t

Y R A Y R A I Y
1

, 1= lim , = 2, , 1,−
+ −→∞

+Li i i kt
R A k N  

 
where the matrix iR  is the diagonal matrix with dia-
gonal entries that are defined as the moduli of corres-
ponding diagonal entries of the matrix , , 0.≥i iA i  

It can be shown in a straight forward way that the 
explicit form of the matrices , = 0, , 1,+LkY k N  is given 
by:  

 
 0 1= diag{ , , },Ω Ω% %L RY  

 

1,1 1,2 1,

2,1 2,2 1,
1

,1 ,2 ,

= ,

⎛ ⎞
⎜ ⎟
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⎜ ⎟⎜ ⎟
⎝ ⎠

% % %K
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M M O M
% % %K

R

R

R R R R

Q Q Q
Q Q Q

Y

Q Q Q

 

 

 

( 1)
1,1
( 1) ( 1)
2,1 2,2

( 1) ( 1) ( 1) ( 1)
1,1 1,2 1,3 1, 1

( 1) ( 1) ( 1) ( 1) ( 1)
,1 ,2 ,3 , 1 ,

= , 2, , 1,

−

− −

− − − −
− − − − −
− − − − −

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟ = +
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

% K
% % K

LM M O O M M
% % % %O
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k

k k

k
k k k k

R R R R R
k k k k k

R R R R R R R

Z O O O O
Z Z O O O
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Z Z Z Z O
Z Z Z Z Z
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3
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≠ ≠⎪⎩
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n N

 

 
Here 

( )
0 ,Σ r ( )

1Σ
r

 and 
( )
2Σ
r

 are the diagonal matrices 
whose diagonal elements are determined by the corre-
sponding diagonal elements of the matrices 

( )
0 ,− rD ( )

1
rD  

and 
( )
2 ,rD  respectively. Thus, the lemma is proved.  

Having proved that the Markov chain , 0,≥t tξ  be-
longs to the class of the asymptotically quasi-Toeplitz 
Markov chains, we can use the results previously obta-
ined for this type of chains for derivation of conditions 
of the existence of the stationary mode of operation and 
computation of the stationary probabilities of the system 
states. As follows from (Klimenok and Dudin, 2006), a 
sufficient condition for the existence of the stationary 
distribution of the asymptotically quasi-Toeplitz Markov 
chain is the fulfillment of the inequality  

 
1

0
=2

> ( 1)
+

−∑y e y e
N

k
k

Y k Y   (1) 

 
where the row vector y  is the unique solution to the 
system  
 

1

=0
= , = 1.

+

∑y y ye
N

k
k

Y   (2) 

 
In general, to check whether the Markov chain under 

study is ergodic or not, it is necessary to solve finite 

system of Eq. (2) on a computer, substitute the obtained 
solution to inequality (1) and verify the fulfillment of 
inequality (1). However, under certain conditions this 
steps can be avoided. Namely, it can be shown that if the 
customers from orbit are nonpersistent or impatient at 
least for one state of the ,RE  i.e. , {1, , },∃ ∈ Lr r R  that 

( )
3 0≠rq  or 

( ) 0,≠rβ  then the Markov chain tξ  is ergodic 
for any sets of other system parameters. 

In what follows, we assume that the ergodicity con-
dition is fulfilled. Then the following limits (stationary 
probabilities) exist:  
 

( , , , , ) = lim { = , = , = , = , = },
→∞ t t t t tt

p i r n m P i i r r n n m mν ν ν  
( )0, = 1, , , = 0, , ,≥ L L ri r R n N  

     ( )= 0, , min{ , }, = 0, , .L Lrm n M Wν  
 
Let us form the row vectors p i  as follows:  
 

( , , , ) = ( ( , , , , 0), ( , , , , 1), ,p Li r n m p i r n m p i r n m
( )( , , , , )), = 0, , min{ , },L rp i r n m W m n M  

( )( , , ) = ( ( , , , 0), ( , , , 1), , ( , , , min{ , })),p p p pL ri r n i r n i r n i r n n M

        ( )= 0, , ,L rn N  
( )( , ) = ( ( , , 0), ( , , 1), , ( , , )), = 1, , ,p p p pL Lri r i r i r i r N r R

= ( ( , 1), ( , 2), , ( , )), 0.≥p p p pLi i i i R i  
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It is well known that the vectors , 0,≥pi i  satisfy the 
system  

 
0 1 0 1( , , ) = , ( , , ) = 1.p p 0 p p eL LA  (3) 

 
System (3) has infinitely many equations and un-

knowns, and solution of this system is a quite difficult 
task. However, the numerically stable algorithm devel-
oped in (Klimenok and Dudin, 2006) can be success-
fully applied for computing the vectors , 0.≥pi i  This 
algorithm does not assume solution of system (3). In-
stead, using the notion of the so called censored Markov 
chain, alternative to (3) system of equations for the vec-
tors , 0,≥pi i  is derived and solved. 

 
The main steps of this algorithm are as follows. 

• Calculate the matrix G  as the minimal nonnegative 

solution of the matrix equation 

1

=0
= .

+

∑
N

k
k

k
G Y G  

• Calculate the matrices iG  by using the backward 
recursion  

1
1

1, 1 2 1 1,
= 1

= ( ) , 0,
+ +

−
+ − − + +

+

− ≥∑ L
i N

i i n n n i i i
n i

G A G G G A i  

with the boundary condition = ,iG G  0≥i i ,  
 
where the value 0i  is adaptively chosen as the minimal 
integer for which the norm of the matrix 

0 1− −iG G  is less 
than some pre-assigned small value. 
 

 • Calculate the matrices , , 0, ,≥ + ≥ ≥i lA i N i l i  by the 
formula  

, , , 1 2
= 1

= , , 0.
+

− −
+

+ ≥ ≥∑ L
N i

i l i l i n n n l
n l

A A A G G G l i i  

• Calculate the matrices , 0,≥lF l  using the recursion 
1

1
0 , ,

=max{0, }

= , = ( ) , 1.
−

−

−

− ≥∑
l

l i i l l l
i l N

F I F F A A l  

 
• Calculate the vector 0p  as the unique solution to the 

system of linear algebraic equations  

0 0,0 0
=0

( ) = , = 1.
∞

− ∑p 0 p ei
i

A F  

 
• Calculate the vectors , 1,≥pi i  by  

0= , 1.≥p pi iF i  
Numerical stability of this algorithm stems from the 

fact that subtraction operation is not used in computa-
tions. All the involved matrices have non-negative en-
tries. 

5.  PERFORMANCE MEASURES 

After finding the stationary probabilities , 0,≥pi i  
it is possible to find the main performance measures of 

the system under study. 
Distribution of the customers in orbit is defined as 

{ = } = , 0.lim
→∞

≥p et i
t

P i i i  

The average number of customers in orbit is cal-
culated as  

=1

= .
∞

∑ p eorbit i
i

L i  

The mean number of customers in the system and 
orbit is  

( )

=0 =1 =0

= ( ) ( , , ) .
∞

+∑∑∑ p e
rR N

i r n

L i n i r n  

 
The mean number of busy servers  

( )

=0 =1 =1
= ( , , ) .

∞

∑∑∑ p e
rR N

server
i r n

N n i r n  

 
The average number of busy servers processing 

type-1 customers is defined as  

 
( )( ) min{ , }

(1)

=0 =1 =1 =0
= ( ) ( , , , ) .

∞

−∑∑∑ ∑ p e
rr n MR N

server
i r n m

N n m i r n m  

 
The average number of busy servers processing 

type-2 customers is defined as  
( )( ) min{ , }

(2) (1)

=0 =1 =1 =1
= ( , , , ) = .

∞

−∑∑∑ ∑ p e
rr n MR N

server server server
i r n m

N m i r n m N N  

 
The intensity of output flow of type-1 customers is 

calculated as  
( )( ) min{ , }

(1) ( )
1

=0 =1 =1 =0
= ( ) ( , , , ) .

∞

−∑∑∑ ∑ p e
rr n MR N

r
out

i r n m
n m i r n mλ μ  

 
The intensity of output flow of type-2 customers is 

calculated as  

 
( )( ) min{ , }

(2) ( )
2

=0 =1 =1 =1
= ( , , , ) .

∞

∑∑∑ ∑ p e
rr n MR N

r
out

i r n m
m i r n mλ μ  

 
The intensity of output flow of customers is calcu-

lated as  
(1) (2)= .+out out outλ λ λ  

 
Let us denote as lλ  the mean intensity of type-l cu-

stomers arrival, = 1,2.l  It can be shown that this inten-
sity is defined by formula:  

( )= diag{ , 1, , }=q eLr
l lD r Rλ  

 
where the vector q  is the unique solution of the follow-
ing system:  

( ) ( ) ( )
0 1 2( diag{ , 1, , }) = , = 1.⊗ + + + =q 0 qeLr r r

WG I D D D r R  
 
The probability that during an arbitrary type-1 cus-
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tomer arrival epoch all servers are busy and this custo-
mer leaves the system is defined as  

( ) 1 ( ) ( ) ( )
1 1 1 ( ) 11

=0 =1
= ( , , )( ) .

∞
− −

+
⊗∑∑ p e

R
loss ent r r r

rM
i r

P q i r N I Dλ  

 
The probability that during an arbitrary type-1 cu-

stomer arrival epoch all servers are busy and this custo-
mer goes to orbit is defined as  

( ) 1 ( ) ( ) ( )
1 1 1 ( ) 11

=0 =1
= (1 ) ( , , )( ) .

∞
− −

+
− ⊗∑∑ p e

R
orb ent r r r

rM
i r

P q i r N I Dλ  

 
The loss probability of type-1 customer is defined as 

(1)
( )

1
1

= 1 .−loss outP λ
λ

 

 
The loss probability of type-1 customer caused by a 

decrease in the number of servers due to change the state 
of the RE  is given by  

( )( ) min{ 1, }1
( ) 1

1 1 ,
( )=0 =2 =1 =0= 1

= ( )
−∞ −

− −
′

′′ +

∑∑∑ ∑ ∑
rr n MR r N

loss RE
r r

ri r r mn N

P Gλ

( ) ( )max{0, } ( , , , ) .′− − p er rp n N m i r n m  

 
The probability that type-1 customer will go into 

orbit due to termination of its service caused by a de-
crease in the number of servers under the change of the 
state of the RE  is given by  

( )( ) min{ 1, }1
( ) 1

1 1 ,
( )=0 =2 =1 =0= 1

= ( )
−∞ −

− −
′

′′ +

∑∑∑ ∑ ∑
rr n MR r N

orb RE
r r

ri r r mn N

P Gλ

( ) ( )(1 )max{0, } ( , , , ) .′− − − p er rp n N m i r n m  

 
The loss probability of type-2 customer is 

(2)
( )

2 ( ) ( )
2 1 1 1

= 1 .
( )− −−

+ +
loss out

orb RE orb entP
P P

λ
λ λ

 

 
The loss probability of type-2 customer caused by a 

decrease in the number of servers due to the change of 
the state of the RE  is defined as  

1
( ) ( ) ( ) 1

2 2 1 1 1 ,
=0 =2 =1

= ( ( )) ( )
∞ −

− − − −
′

′
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The probability that type-1 customer will go into 

orbit because the termination of its service caused by a 
decrease in the number of servers due to the change of 
the state of the RE is given by  

1
( ) ( ) ( ) 1

2 2 1 1 1 ,
=0 =2 =1
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∞ −

− − − −
′
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orb RE orb RE orb ent
r r

i r r

P P P Gλ λ  

( )( ) min{ 1, }
( ) ( )

( ) =1= 1

(1 ) (min{ , max{ , 0}}
−
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    ( ) ( )max{0, max{ , 0} }) ( , , , ) .′ ′+ − − − p er rm n N M i r n m  

 
The loss probability of an arbitrary customer is cal-

culated as  
( )

1 2

= 1 .−
+

loss outP λ
λ λ

 

 
The loss probability of an arbitrary type-2 customer 

due to the business of more than 
( ) 1−rM  servers upon 

its arrival is defined as  
( ) ( ) ( ) 1

2 2 1 1 1= ( ( ))− − − −+ +loss ent orb RE orb entP P Pλ λ  
( )

( ) ( )
2 ( ) 21( )=0 =1 =

( , , )( ) .
∞

+
⊗∑∑ ∑ p e

rR N
r r

rMri r n M

q i r n I D  

 
The probability of an arbitrary type-2 customer goes 

to orbit due to more than 
( ) 1−rM  busy servers upon its 

arrival is defined as  
( ) ( ) ( ) 1

2 2 1 1 1= ( ( ))− − − −+ +orbit ent orb RE orb entP P Pλ λ  
( )

( ) ( )
2 ( ) 21( )=0 =1 =

(1 ) ( , , )( ) .
∞
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rMri r n M
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The probability of loss of an arbitrary customer 

from orbit is 
 ( ) ( ) ( ) ( )

2 2 2= .− − − −− −loss from orbit loss loss ent loss REP P P P  
 
The probability that an arbitrary type-2 customer from 

orbit makes an attempt to get service when the number 
of busy servers exceeds 

( ) 1−rM  and returns to orbit is 
calculated as  

( )
( ) 1 ( ) ( )

3
( )=1 =1 =

= (1 ) ( , , )
∞

− − − −∑∑ ∑ p e
rR N

return to orbit r r

ri r n M

P i q i r nα α  

 

where 
( )

=1 =1

= ( , ) .
∞

∑∑ p e
R

r

i r

i i rα α  

The probability that an arbitrary type-2 customer 
from orbit makes an attempt to get service when the 
number of busy servers exceeds ( ) 1−rM  and leaves the 
system is calculated as  

( )
( ) 1 ( ) ( )

1 3
( )=1 =1 =

= ( , , ) .
∞

− − ∑∑ ∑ p e
rR N

loss nonpersistent r r

ri r n M

P i q i r nα α  

6.  NUMERICAL EXAMPLES 

 
Let us consider the following set of the system pa-

rameters. The number of the states of the RE  is = 2.R  
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Under state 1 of the RE, the system has the following 
parameters characterizing the number of available ser-
vers, impatience of customers and intensities of their 
retrials and service:  

(1) (1) (1) (1) (1)
1 2 3= 6, = 0.4, = 0.2, = 0.6, = 0.4,N p q q q  

(1) (1) (1) (1)
1 2= 0.2, = 0.5, = 0.5, = 0.8.γ α μ μ   

 
Under state 2 of the RE, the parameters are as fol-

lows:  
(2) (2) (2) (2) (2)

1 2 3= 12, = 0.2, = 0.2, = 0.3, = 0.3,N p q q q  
(2) (2) (2) (2)

1 2= 0.1, = 0.6, = 0.3, = 0.6.γ α μ μ  

 
We assume that the arrival flow under state 1 of the 

RE is defined by the matrices  
(1) (1)
0 1

0.6759 0 0.26856 0.0018
= , = ,

0 0.021941 0.004886 0.00389
−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

D D  

(1)
2

0.40284 0.0027
= ,

0.00733 0.005835
⎛ ⎞
⎜ ⎟
⎝ ⎠

D  

 
and under state 2 of the RE it is defined by the matrices  

(2) (2)
0 1

2.7036 0.0 0.6714 0.0045
= , = ,

0.0 0.087766 0.012216 0.009725
−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

D D

(2)
2

2.0142 0.0135
= .

0.03665 0.029175
⎛ ⎞
⎜ ⎟
⎝ ⎠

D  

 
The average arrival intensity 

(1)λ  of customers under 
state 1 of the RE is 0.5 (the average arrival rate of han-
dover customers is 

(1)
1 = 0.2,λ  and the average arrival 

rate of non-priority customers 
(1)
2 = 0.3λ ). Under state 2 

of the RE, the average arrival rate of customers 
(2)λ  is 2  

(the average arrival rate of priority customers 
(2)

1 = 0.5,λ  
and the average arrival rate of non-priority customers 

(2)
2 = 1.5λ ). 

Let the generator of the RE  be  
0.06 0.06

= .
0.006 0.006
−⎛ ⎞
⎜ ⎟−⎝ ⎠

G  

 
From the point of view of possible practical appli-

cations for design of a cell of mobile communication 
networks, the fixed above parameters of the system may 
be interpreted as follows. 91 percent of time the system 
operates in the normal mode and 9 percent of time the 
system operates in the congestion mode. The average 
arrival rate in the congestion mode is four times (2 ver-
sus 0.5) higher than in the normal mode. This may be 
caused by some peaks of business or driving activity in 
the vicinity of the modeled cell during certain periods of 
time. Taking existence of such peaks into account, the 
service provider may assign in advance to this cell radio 
frequencies sufficient for simultaneous service of 12 
customers during the congestion mode versus 6 in the 
normal mode. The profit of the service provider is de-

fined by the throughput of the cell. This throughput is 
defined as the intensity of the arriving flow of customers 
minus the intensity of the lost customers. Thus, to in-
crease the throughput, it is necessary to reduce the prob-
ability of customers loss. From the perspective of the 
human psychology and image of the service provider, it 
is usually assumed that the probability of handover cus-
tomer loss (sometimes referred to as the dropping pro-
bability) is more significant than the probability of the 
fresh customer loss (blocking probability). Therefore, 
these loss probabilities have to be computed and treated 
separately. Under the fixed state, ,r  of the RE, availabi-
lity of the parameter (threshold) 

( )rM  allows to vary the 
implicit priority given to thehandover customers. When 

( ) ( ) ,=r rM N  thehandover customers do not have any pri-
ority. The dropping probability equals to the blocking 
probability. When 

( )rM  decreases, i.e., a certain part of 
servers becomes available only for the handover (type-
1) customers, it is clear that the dropping probability 
decreases at expense of the blocking probability increas-
ing. To reach a reasonable trade-off between these two 
loss probabilities and to gain the best value of the 
throughput, the quantitative analysis of the behavior of 
the loss probabilities 

( )
1

lossP  of priority and 
( )

2
lossP  of non-

priority customers as the functions of the thresholds 
(1)M  

and 
(2)M  is required.To give such an analysis in our ex-

ample, we vary the valueof the parameter 
(2)M  from 1 to 

(2) ,N  and the parameter 
(1)M  from 1 to 

(1) (2)min{ , }.N M  
Figure 2, Figure 3 show the dependence of the loss 
probabilities 

( )
1

lossP  of priority and 
( )

2
lossP  of non-priority 

customers on the thresholds 
(1)M  and 

(2).M  
 

 
Figure 2. Dependence of 

( )
1

lossP  on the parameters 
(1)M  

and 
(2).M  

 

 
Figure 3. Dependence of 

( )
2

lossP  on the parameters 
(1)M  

and 
(2).M  



Queueing System Operating in Random Environment as a Model of a Cell Operation 

Vol 15, No 2, June 2016, pp.131-142, © 2016 KIIE 141
  

 

 

Figure 4. Dependence of 
(1) (2)( , )J M M  on the parameters 

(1)M  and 
(2).M  

These figures confirm our intuitive consideration that 
the increase of the parameters 

( )rM  leads to the smaller 
dropping probability and the larger blocking probability. 
It is worth to note also that these figures show that the 
impact of the parameter 

(2)M  is more essential (likely 
because the system is more congested under the state 2 
of the RE) than the impact of the parameter 

(1).M  
To analyse the influence of the thresholds 

(1)M  and 
(2)M  on the aggregate performance of the cell, various 

economical criteria can be used. Let us assume in this 
example that the quality of the system operation is de-
fined by the following simple economical criterion: 

  
(1) (2) ( ) ( )

1 1 1 2 2 2( , ) = +loss lossJ M M a P a Pλ λ  
 

where , = 1, 2,la l  are the charges paid by the system for 
loss of type-l customer. It is worth noting that the prob-
lem of the suitable choice of cost coefficients (in our 
case, the coefficients 1a  and 2a ) in the cost criterion 
always plays a crucial role in the successful implementa-
tion of optimization. We assume here that in our model 
the cost coefficients are obtained from experts in the te-
lecommunication area. In this example, we fix 1 = 100a  
and 2 = 10a . 

The introduced criterion has the meaning of the lost 
revenues or the penalty of the system for the customers 
loss per unit of time. Therefore, our purpose is to define 
the values 

(1)
*M  and 

(2)
*M  for which the value 

(1)( ,J M  
(2) )M  of the criterion is minimal. Figure 4 presents the 

dependence of the cost criterion 
(1) (2)( , )J M M  on para-

meters 
(1)M  and 

(2)M . 
For the surface presented in this figure, the optimal 

values of the parameters 
(1)M  and 

(2)M  are 
(1)
* = 5M  and 

(2)
* = 11,M  correspondingly, and the optimal value of the 

economical criterion is 
* (1) (2)

* *( , ) = 0.24583.J M M  If we do 
not use servers reservation in any state of the RE, i.e., 
we fix 

(1) (1)= = 6M N  and 
(2) (2)= = 12,M N  we get 

(1)( ,J M  
(2) ) = 0.41308.M  Thus, the optimal reservation of servers 

provides an essential economical profit. Therefore, the 
presented above results can be used by the specialists of 
mobile services providers to easy achieve better perfor-
mance of the cell just by the means of the proper re-
servation of a few channels exclusively for service of 

handover customers. The best choice of the number of 
the reserved channels, under any fixed set of the system 
parameters, parameters characterizing the RE and cost 
coefficients, can be made based on the results of our 
analysis. 

6.  CONCLUSION 

In this paper, a multi-server queueing model with 
two types of customers is considered. All the system 
parameters, including the number of servers, depend on 
the state of a random environment. The process of the 
system operation is considered, the ergodicity condition 
is derived, the main performance measures are calcu-
lated. The results can be effectively used to optimize the 
operation of the mobile network cell by means of the 
correct choice of admission control strategy of new and 
handover requests. 
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