• Title/Summary/Keyword: multi-dimensional evaluation

Search Result 230, Processing Time 0.022 seconds

A Study on the Development Strategy of Artificial Intelligence Technology Using Multi-Attribute Weighted Average Method (다요소 가중 평균법을 이용한 인공지능 기술 개발전략 연구)

  • Chang, Hae Gak;Choi, Il Young;Kim, Jae Kyeong
    • Journal of Information Technology Services
    • /
    • v.19 no.2
    • /
    • pp.93-107
    • /
    • 2020
  • Recently, artificial intelligence (AI) technologies has been widely used in various fields such as finance, and distribution. Accordingly, Korea has also announced its AI R&D strategy for the realization of i-Korea 4.0 in May 2018. However, Korea's AI technology is inferior to major competitors such as the US, Canada, and Japan Therefore, in order to cope with the 4th industrial revolution, it is necessary to allocate AI R&D budgets efficiently through selection and concentration so as to gain competitive advantage under a limited budget. In this study, the importance of each AI technology was evaluated in multi-dimensional way through the questionnaire of expert group using the evaluation index derived from the literature review From the results of this study, we draw the following implication. In order to successfully establish the AI technology development strategies, it is necessary to prioritize the cognitive computing technology that has great market growth potential, ripple effect of technology development, and the urgency of technology development according to the principle of selection and concentration. To this end, it is necessary to find creative ideas, manage assessments, converge multidisciplinary systems and strengthen core competencies. In addition, since AI technology has a large impact on socioeconomic development, it is necessary to comprehensively grasp and manage scientific and technological regulations in order to systematically promote AI technology development.

The Effect of Extrinsinc Cues on the Clothing Products Evaluation (의류상품평가에 대한 외재적 단서의 영향)

  • 이선재
    • Journal of the Korean Society of Costume
    • /
    • v.43
    • /
    • pp.125-142
    • /
    • 1999
  • This research was aimed to present a model of clothing products evaluation nd to classify the effect of extrinsic cues on clothing products evaluation. In order to accomplish following subjects were established. First it is to find the effect of extrinsic cues -price brand store - on perceived quality perceived risk perceived value and purchase intention of clothing products. Second it is to formulate a model of clothing products evaluation and find the relation among the variables such as extrinsic cues perceived quality perceived risk perceived value and purchase intention. This research was mainly divided into theoretical and empirical part. In the theoretical part previous theories and studies on clothing products cues clothing products evaluation perceived quality perceived risk and perceived value were examined to establish a research model and to present a theoretical frame for clothing products evaluation. In the empirical research a questionnaire was developed and statistical data were collected from during July 1997. The subjects were 862 women in the age of 20-35 living in Seoul and kyungki region. SAS and LISREL were used to analyze the collected data. frequency percentage factor analysis ANOVA duncan test correlation analysis regression analysis and LISREL were applied. The results of this research are as follows: First perceived quality consists of performance quality external quality and utility quality in a form of multi dimensional structural. Perceived risk is structured by social/resultant risk financial/fashionable risk and performance/management risk. Second this research proved that extrinsic cues are influenced by each individual variable and extrinsic cues interact with each other through the variable. The perceived quality is influenced most by price Among the perceived risk social/resultant risk by brand financial/fashionable risk by price and performance/management risk by store. respectively. Perceived value is inflenced by price and brand. Third in evaluating process consumer use extrinsic cues to first formulate perceived quality and perceived risk of clothing products and then formulate perceived value ot decide on purchase intention.

  • PDF

The Effect of Sample and Particle Sizes in Discrete Particle Swarm Optimization for Simulation-based Optimization Problems (시뮬레이션 최적화 문제 해결을 위한 이산 입자 군집 최적화에서 샘플수와 개체수의 효과)

  • Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.95-104
    • /
    • 2017
  • This paper deals with solution methods for discrete and multi-valued optimization problems. The objective function of the problem incorporates noise effects generated in case that fitness evaluation is accomplished by computer based experiments such as Monte Carlo simulation or discrete event simulation. Meta heuristics including Genetic Algorithm (GA) and Discrete Particle Swarm Optimization (DPSO) can be used to solve these simulation based multi-valued optimization problems. In applying these population based meta heuristics to simulation based optimization problem, samples size to estimate the expected fitness value of a solution and population (particle) size in a generation (step) should be carefully determined to obtain reliable solutions. Under realistic environment with restriction on available computation time, there exists trade-off between these values. In this paper, the effects of sample and population sizes are analyzed under well-known multi-modal and multi-dimensional test functions with randomly generated noise effects. From the experimental results, it is shown that the performance of DPSO is superior to that of GA. While appropriate determination of population sizes is more important than sample size in GA, appropriate determination of sample size is more important than particle size in DPSO. Especially in DPSO, the solution quality under increasing sample sizes with steps is inferior to constant or decreasing sample sizes with steps. Furthermore, the performance of DPSO is improved when OCBA (Optimal Computing Budget Allocation) is incorporated in selecting the best particle in each step. In applying OCBA in DPSO, smaller value of incremental sample size is preferred to obtain better solutions.

Measurement of Ground Reaction Force and Energy Consumption for Ankle Assembly (Fixed-axis , Single-axis , Multi-axis Type) of Trans-Tibial Amputee (하퇴의지착용자에 대한 인공족관절 유형(고정형, 단축형, 다축형)에 따른 지면반발력 및 에너지 소모의 측정)

  • 김성민;배하석;박창일
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.6
    • /
    • pp.543-550
    • /
    • 2001
  • In this study, ground reaction force(GRF) and energy consumption of fixed. single-axis and multi-axis Prosthetic ankle assemblies were investigated to show the biomechanical evaluation for trans-tibial amputees. In the experiments. two male and two female trans-tibial amputees were tested with fixed, sin91e-axis and multi-axis Prosthetic ankle assembly. A three-dimensional gait analysis was carried out to derive the ratio of GRF to weight as the percentage of total stance Phase for nine Points Energy consumption of each Prosthetic ankle assembly was measured while subjects walked at 2km/h. 3km/h and the most comfortable walking speed on the treadmill The results showed that multi-axis ankle was superior to the other two ankle assemblies for the characteristic of forwarding and breaking forces. Fixed ankle was relatively superior to the other two ankle assemblies for gait balancing and movement of the center fur mass Compared to the other ankle assembly. sing1e-axis type showed lower energy consumption over 2.3km/h walking speed .

  • PDF

EVALUATION OF NONLINEAR FINITE ELEMENT COMPUTER PROGRAM SMAP-S2 (비선형 유한요소 컴퓨터 프로그램 SMAP-S2의 평가)

  • 김광진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.271-288
    • /
    • 1991
  • SMAP-S2 is an advanced too-dimensional , static finite element computer program developed for the geometric and material nonlinear structure-medium interaction analysis. The program has specific applications for modeling geomechanical problems associated with multi-staged excavation or embankment. Theoretical formulations and computational algorithms are presented along with the description of elasto-plastic material models. Nonlinear features of the code are verified by comparing with known solutions or experimental test results. Capabilities of per- and post-processing programs are discussed.

  • PDF

Evaluation of Spreading Thermal Resistance in Symmetrical Four-Heat Generating Electronic Components (4개 대칭배열 발열 전자소자에서의 확산 열저항 산정)

  • Kim Yun-Ho;Kim Seo-Young;Rhee Gwang-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.664-671
    • /
    • 2006
  • We propose the correlation to predict the spreading thermal resistance on a plate with symmetrical four heat sources. The correlation transforms four heat sources to a single equivalent heat source and then the spreading thermal resistance can be obtained with the existing equation for a single heat source. When the four heat sources are mounted on a square base plate, the correlation is expressed as a function of the heat source size, the length of base plate, the plate thermal conductivity and the distance between heat sources. Compared to the results of three-dimensional numerical analysis, the spreading thermal resistance by the proposed correlation is in good agreement within 10 percent accuracy.

Performance Evaluation and Development of Virtual Reality Bike Simulator (가상현실 바이크 시뮬레이터의 개발과 성능평가)

  • Kim, Jong-Yun;Song, Chul-Gyu;Kim, Nam-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.3
    • /
    • pp.112-121
    • /
    • 2002
  • This paper describes a new bike system for the postural balance rehabilitation training. Virtual environment and three dimensional graphic model is designed with CAD tools such as 3D Studio Max and World Up. For the real time bike simulation, the optimized WorldToolKit graphic library is embedded with the dynamic geometry generation method, multi-thread method, and portal generation method. In this experiment, 20 normal adults were tested to investigate the influencing factors of balancing posture. We evaluated the system by measuring the parameters such as path deviation, driving velocity, COP(center for pressure), and average weight shift. Also, we investigated the usefulness of visual feedback information by weight shift. The results showed that continuous visual feedback by weight shift was more effective than no visual feedback in the postural balance control It is concluded this system might be applied to clinical use as a new postural balance training system.

A Simulation Method for Modeling the Morphology and Characteristics of Electrospun Polymeric Nanowebs

  • Kim Hyungsup;Kim Dae-Woong;Seo Moon Hwo;Cho Kwang Soo;Haw Jung Rim
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.107-113
    • /
    • 2005
  • We developed an algorithm to simulate the generation of virtual nanowebs using the Monte Carlo method. To evaluate the pore size of the simulated multi-layered nanoweb, an estimation algorithm was developed using a ghost particle having zero volume and mass. The penetration time of the ghost particle through the virtual nanoweb was dependent on the pore size. By using iterative ghost particle penetrations, we obtained reliable data for the evaluation of the pore size and distribution of the virtual nanowebs. The penetration time increased with increasing number of layers and area ratio, whereas it decreased with increasing fiber diameter. Dimensional analysis showed that the penetration time can be expressed as a function of the fiber diameter, area ratio and number of layers.

An investigation of non-linear optimization methods on composite structures under vibration and buckling loads

  • Akbulut, Mustafa;Sarac, Abdulhamit;Ertas, Ahmet H.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.209-231
    • /
    • 2020
  • In order to evaluate the performance of three heuristic optimization algorithms, namely, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO) for optimal stacking sequence of laminated composite plates with respect to critical buckling load and non-dimensional natural frequencies, a multi-objective optimization procedure is developed using the weighted summation method. Classical lamination theory and first order shear deformation theory are employed for critical buckling load and natural frequency computations respectively. The analytical critical buckling load and finite element calculation schemes for natural frequencies are validated through the results obtained from literature. The comparative study takes into consideration solution and computational time parameters of the three algorithms in the statistical evaluation scheme. The results indicate that particle swarm optimization (PSO) considerably outperforms the remaining two methods for the special problem considered in the study.

Applications of a Methodology for the Analysis of Learning Trends in Nuclear Power Plants

  • Cho, Hang-Youn;Park, Sung-Nam;Yun, Won-Yong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.293-299
    • /
    • 1995
  • A methodology is applied to identify tile learning trend related to the safety and availability of U.S. commercial nuclear power plants. The application is intended to aid in reducing likelihood of human errors. To assure that tile methodology ran be easily adapted to various types of classification schemes of operation data, a data bank classified by the Transient Analysis Classification and Evaluation(TRACE) scheme is selected for the methodology. The significance criteria for human-initiated events affecting tile systems and for events caused by human deficiencies were used. Clustering analysis was used to identify the learning trend in multi-dimensional histograms. A computer rode is developed based on tile K-Means algorithm and applied to find the learning period in which error rates are monotonously decreasing with plant age.

  • PDF