• Title/Summary/Keyword: multi-dimensional device

Search Result 77, Processing Time 0.026 seconds

The Prism Effect-based Creativity-Thinking Process: With 'Multi-Sensory,' 'Multi-Dimensional,' and 'Storytelling' Devices

  • Won Kyung-Ah
    • Archives of design research
    • /
    • v.19 no.3 s.65
    • /
    • pp.5-18
    • /
    • 2006
  • Digital information society shows a variety of contents of cross-categorial digital media in their inner or outer forms and concepts of the artistic aspects. In order to cope with such a complicated, unexpected trend in digital media and its industry, a new approach in the design process needs to be developed and adjusted with the new equipment of the creativity-thinking process of 'the Multi-Sensory Device (MSD),' 'the Multi-Dimensional Device (MDD),' and 'the Storytelling Device (SD)' in the Prism Effect-based Creativity-Thinking Process (PECTP). The PECTP is in principle designed to practically work with the four distinct techniques: 1) Physical Activity, 2) Linguistic Activity, 3) Visual Activity, and 4) Complex Activity. Consequently, this thesis notes that the nature of the cross-categorial design contents is necessarily non-directional since the creativity power inside the Prism Effect results in openness and diversity.

  • PDF

3-Dimensional Circuit Device Fabrication for Improved Design Freedom based on the Additive Manufacturing (설계자유도 향상을 위한 부가가공 기반의 3차원 회로장치 제작)

  • Oh, Sung Taek;Jang, Sung Hyun;Lee, In Hwan;Kim, Ho Chan;Cho, Hae Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1077-1083
    • /
    • 2014
  • Multi-material Additive Manufacturing (AM) is being focused to apply for direct manufacturing of a product. In this paper, a three-dimensional circuit device (3DCD) fabrication technology based on the multi-material AM technology was proposed. In contrast with conventional two-dimensional Printed Circuit Board (PCB), circuit elements and conducting wires of 3DCD are placed in threedimensional configuration at multiple layers of the structure. Therefore, 3DCD technology can improve design freedom of an electronic product. In this paper, 3DCD technology is proposed based on AM technology. Two types of 3DCD fabrication systems were developed based on the Stereolithography and the Fused Deposition Modeling technologies. And the 3DCD samples which have same function were fabricated, successfully.

Influence of slot width on the performance of multi-stage overtopping wave energy converters

  • Jungrungruengtaworn, Sirirat;Hyun, Beom-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.668-676
    • /
    • 2017
  • A two-dimensional numerical investigation is performed to study the influence of slot width of multi-stage stationary floating overtopping wave energy devices on overtopping flow rate and performance. The hydraulic efficiency based on captured crest energy of different device layouts is compared with that of single-stage device to determine the effect of the geometrical design. The results show optimal trends giving a huge increase in overtopping energy. Plots of efficiency versus the relative slot width show that, for multi-stage devices, the greatest hydraulic efficiency is achieved at an intermediate value of the variable within the parametric range considered, relative slot width of 0.15 and 0.2 depending on design layouts. Moreover, an application of adaptive slot width of multi-stage device is investigated. The numerical results show that the overall hydraulic efficiency of non-adaptive and adaptive slot devices are approximately on par. The effect of adaptive slot width on performance can be negligible.

A Three-dimensional Magnetic Field Mapping System for Deflection Yoke of Cathode-Ray Tube

  • Park, K.H.;Yoon, M.;Kim, D.E.;Lee, S.M.;Joo, H.D.;Lee, S.D.;Yang, W.Y.
    • Journal of Information Display
    • /
    • v.3 no.4
    • /
    • pp.19-22
    • /
    • 2002
  • In this paper, we introduce an efficient three-dimensional magnetic field mapping system for a Deflection Yoke (DY) in Cathode-Ray Tube (CRT). A three-axis Hall probe mounted in a small cylindrical bar and three-stepping motors placed in a non-magnetic frame were utilized for the mapping. Prior to the mapping starts, the inner contour of DY was measured by a laser sensor to make a look-up table for inner shape of DY. Three-axis magnetic fields are then digitized by a three-dimensional Hall probe. The results of the mapping can be transformed into various output formats such as multi pole harmonics of magnetic fields. Field shape in one, two and three- dimensional spaces can also be displayed. In this paper, we present the features of this mapping device and some analysis results.

Deterministic Multi-dimensional Task Scheduling Algorithms for Wearable Sensor Devices

  • Won, Jong-Jin;Kang, Cheol-Oh;Kim, Moon-Hyun;Cho, Moon-Haeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3423-3438
    • /
    • 2014
  • In recent years, wearable sensor devices are reshaping the way people live, work, and play. A wearable sensor device is a computer that is subsumed into the personal space of the user, and is always on, and always accessible. Therefore, among the most salient aspects of a wearable sensor device should be a small form factor, long battery lifetime, and real-time characteristics. Thereby, sophisticated applications of a wearable sensor device use real-time operating systems to guarantee real-time deadlines. The deterministic multi-dimensional task scheduling algorithms are implemented on ARC (Actual Remote Control) with relatively limited hardware resources. ARC is a wearable wristwatch-type remote controller; it can also serve as a universal remote control, for various wearable sensor devices. In the proposed algorithms, there is no limit on the maximum number of task priorities, and the memory requirement can be dramatically reduced. Furthermore, regardless of the number of tasks, the complexity of the time and space of the proposed algorithms is O(1). A valuable contribution of this work is to guarantee real-time deadlines for wearable sensor devices.

Development of Two Dimensional Position Measuring Device for Floating Structure Using an Image Processing Method (이미지 프로세싱을 이용한 부유구조물의 2차원 위치 계측장치 개발)

  • 지명석;김성근;김상봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.166-172
    • /
    • 1994
  • This paper presents an image processing method for two dimensional position measurement of a floating structure. This method is based on image processing technique using concept of window and threshold processing to track the target object. The experimental results for position measurement of the target object in two dimensional water tank demonstrate the validity of this method.

  • PDF

THERMAL-HYDRAULIC TESTS AND ANALYSES FOR THE APR1400'S DEVELOPMENT AND LICENSING

  • Song, Chul-Hwa;Baek, Won-Pil;Park, Jong-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.299-312
    • /
    • 2007
  • The program on thermal-hydraulic evaluation by testing and analysis (THETA) for the development and licensing of the new design features in the APR1400 (Advanced Power Reactor-1400) is briefly introduced with a presentation on the research motivation and typical results of the separate effect tests and analyses of the major design features. The first part deals with multi-dimensional phenomena related to the safety analysis of the APR1400. One research area is related to the multidimensional behavior of the safety injection (SI) water in a reactor pressure vessel downcomer that uses a direct vessel injection type of SI system. The other area is associated with the condensation of steam jets and the resultant thermal mixing in a water pool; these phenomena are relevant to the depressurization of a reactor coolant system (RCS). The second part describes our efforts to develop new components for safety enhancements, such as a fluidic device as a passive SI flow controller and a sparger to depressurize the RCS. This work contributes to an understanding of the new thermal-hydraulic phenomena that are relevant to advanced reactor system designs; it also improves the prediction capabilities of analysis tools for multi-dimensional flow behavior, especially in complicated geometries.

Breakdown and On-state characteristics of the Multi-RESURF SOI LDMOSFET (Epi층의 농도 및 두께 변화에 따른 Multi-RESURF SOI LDMOSFET의 특성분석)

  • Kim, Hyoung-Woo;Kim, Sang-Cheol;Seo, Kil-Su;Kim, Nam-Kyun;Kim, Eun-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1578-1580
    • /
    • 2002
  • The breakdown and on-state characteristics of the multi-RESURF SOI LDMOSFET is presented. P-/n-epi layer thickness and doping concentration is varied from $2{\mu}m{\sim}5{\mu}m$ and $1{\times}10^{15}/cm^3{\sim}9{\times}10^{15}/cm^3$ to obtain optimum breakdown voltage and on-resistance. The breakdown and on-state characteristics of the device is verified by two-dimensional process simulator ATHENA and device simulator ATLAS.

  • PDF

A Multi-View Images Interleaving for Slanted Parallax Barrier based Display Device (사선형 시차 장벽 기반 입체 디스플레이 장치를 위한 다중 시점 영상 생성)

  • Jung, Kyung-Boo;Park, Jong-Il;Choi, Byung-Uk
    • Journal of Broadcast Engineering
    • /
    • v.17 no.3
    • /
    • pp.491-502
    • /
    • 2012
  • Flat panel-based parallax barrier or lenticular based 3D display devices that have been developed recently are designed to feel depth. In order to see a three-dimensional(3D) image by the display device, a multi-view image displayed on the flat panel must be regenerated from images of multi-views using a subsampling method. Previous subsampling methods are focused on reducing crosstalk. In this paper, we focus on a misalignment that is occurred on manufacture process of slanted parallax barrier based autostereoscopic display device. Therefore, we propose a interleaving method that considers tilt of slanted parallax barrier, aperture size, and distance between an autostereoscopic display device and a viewer to see a 3D image regardless of a viewer position.

Visual Multi-touch Input Device Using Vision Camera (비젼 카메라를 이용한 멀티 터치 입력 장치)

  • Seo, Hyo-Dong;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.718-723
    • /
    • 2011
  • In this paper, we propose a visual multi-touch air input device using vision cameras. The implemented device provides a barehanded interface which copes with the multi-touch operation. The proposed device is easy to apply to the real-time systems because of its low computational load and is cheaper than the existing methods using glove data or 3-dimensional data because any additional equipment is not required. To do this, first, we propose an image processing algorithm based on the HSV color model and the labeling from obtained images. Also, to improve the accuracy of the recognition of hand gestures, we propose a motion recognition algorithm based on the geometric feature points, the skeleton model, and the Kalman filter. Finally, the experiments show that the proposed device is applicable to remote controllers for video games, smart TVs and any computer applications.